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A MESSAGE FROM THE ADVANCED BATTERY  
MATERIALS RESEARCH PROGRAM MANAGER 

 

 

The Advanced Battery Materials Research (BMR) Program continues to expand its portfolio to include new 

materials and processes that have the potential to reduce the cost and improve the performance of batteries.  

With this comes the addition of several world renowned investigators to our already diverse Team.  A list of 

the new efforts is provided below: 

ǐ In situ Diagnostics of Coupled Electrochemical-Mechanical Properties of Solid Electrolyte Interphases on 

Lithium Metal for Rechargeable Batteries; Xingcheng Xiao, General Motors 

ǐ Advanced Microscopy and Spectroscopy for Probing and Optimizing Electrode-Electrolyte Interphases in 

High-Energy Lithium Batteries; Shirley Meng, University of California ï San Diego 

ǐ Advanced Li -Ion Battery Technology: High-Voltage Electrolyte; Joe Sunstrom, Daikin America 

ǐ Multi -Functional, Self-Healing Polyelectrolyte Gels for Long-Cycle-Life, High-Capacity Sulfur Cathodes 

in Li-S Batteries; Jihui Yang, University of Washington 

ǐ Solid-State Inorganic Nanofiber Network-Polymer Composite Electrolytes for Lithium Batteries; 

Nianqiang Wu, West Virginia University 

ǐ High Conductivity and Flexible Hybrid Solid-State Electrolyte; Eric Wachsman, University of Maryland 

ǐ Self-Forming Thin Interphases and Electrodes Enabling 3D Structured High-Energy-Density Batteries; 

Glenn Amatucci, Rutgers University 

ǐ Dual Function Solid-State Battery with Self-Forming, Self-Healing Electrolyte and Separator; Esther 

Takeuchi, Stony Brook University 

ǐ Self-Assembling Rechargeable Lithium Batteries from Alkali and Alkaline-Earth Halides; Yet-Ming 

Chiang, Massachusetts Institute of Technology 

ǐ Engineering Approaches to Dendrite-Free Lithium Anodes; Prashant Kumta, University of Pittsburgh 

ǐ Dendrite Growth Morphology Modeling in Liquid and Solid Electrolytes; Yue Qi, Michigan State 

University 

ǐ Understanding and Strategies for Controlled Interfacial Phenomena in Li-Ion Batteries and Beyond; Perla 

Balbuena, Texas A&M University 

ǐ First Principles Modeling and Design of Solid-State Interfaces for the Protection and Use of Li-Metal 

Anodes; Gerbrand Ceder, University of California ï Berkeley 

ǐ Electrochemically Responsive Self-Formed Li-ion Conductors for High-Performance Li-Metal Anodes; 

Donghai Wang, Pennsylvania State University (Penn State) 

A few notable achievements for this quarter include: 

ǐ LiF was used to stabilize the LLZO solid electrolyte against moisture and CO2 in air.  In a Li-S battery, this 

solid electrolyte blocked the shuttle reaction, reduced the interface resistance, and improved the Coulombic 

efficiency.  (Task 7.7, John B. Goodenough) 

ǐ A method was demonstrated for surface lattice doping to enhance the cycling stability of Ni-rich 

NMC cathode materials at a high charge cut-off voltage of 4.5 V. (Task 3.3, Ji-Guang Zhang and 

Jianming Zheng) 
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ǐ The existence of the reconstruction rock-salt layer on NMC-532 surface was found to improve cell 

performance by inhibiting impedance growth during cycling.  (Task 5.2, Robert Kostecki) 

ǐ It was demonstrated that prelithiated Ge and GeO nanoparticles can be incorporated into a silicon electrode 

and used as a prelithiation agent. (Task 2.2, Yi Cui) 

 

 

Sincerely, 

 

Tien Q. Duong  
 
Tien Q. Duong 

Manager, Advanced Battery Materials Research (BMR) Program 

Energy Storage R&D 

Vehicle Technologies Office 

Energy Efficiency and Renewable Energy 

U.S. Department of Energy 
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TASK 1 ð ADVANCED ELECTRODE ARCHITECTURES 
 

Summary and Highlights 

Energy density is a critical characterization parameter for batteries for electric vehicles (EVs) as there is only 

so much room for the battery and the vehicle needs to travel over 200 miles.  The U.S. Department of Energy 

(DOE) targets are 500 Wh/L on a system basis and 750 Wh/L on a cell basis.  Not only do the batteries have to 

have high energy density, they need to do so and still deliver 1000 Wh/L for 30 seconds on the system level.  

To meet these requirements not only entails finding new, high-energy-density electrochemical couples, but also 

highly efficient electrode structures that minimize inactive material content, allow for expansion and contraction 

for several thousand  cycles, and allow full access to the active materials by the electrolyte during pulse 

discharges.  In that vein, the DOE Vehicle Technologies Office (VTO) supports two projects in the Advanced 

Battery Materials Research (BMR) Program under Task 1 ï Advanced Electrode Architectures: Task 1.1 ï 

Higher Energy Density via Inactive Components and Processing Conditions, Lawrence Berkeley National 

Laboratory (LBNL); and Task 1.2 ï Pre-Lithiation of Silicon Anode for High-Energy Li-Ion Batteries, Stanford 

University (Stanford). 

The two tasks take different general engineering approaches to improving the energy density.  Task 1.1 attempts 

to increase energy density by making thicker electrodes and reducing the overall amount of inactive components 

per cell.  Task 1.2 attempts to increase the energy density of Li-ion cells by replacing graphitic anodes with 

high-capacity Si-based active materials and a process for prelithiating the anode to make up for the poor 

first-cycle irreversible capacity loss.  Both attempts insist on establishing an appropriate methodology for 

introducing the changes.   

The problem being addressed with the first approach is that as electrode thickness increases, the drying time 

can decrease, which allows additional time for segregation of the electrode components.  Another problem being 

addressed is that thick electrodes may still have to be wound around a mandrel in a cylindrical cell configuration. 

For a thicker electrode, winding leads to more hoop stress on the outer portion of the laminate. Both problems 

can result in delamination of the laminate from the current collector. Another problem with thicker electrodes 

is that they tend to not cycle as well as thinner electrodes and thus reach the end-of-life condition sooner, 

delivering fewer cycles. The source of the cycling problem is still not clear. 

The problem being addressed by the second approach is that although silicon offers higher specific capacity for 

lithium, it experiences a 300% increase in volume during the lithiation process.  The change in volume results 

in freshly exposed surface area to electrolyte during the charging process and in a large amount of lithium ions 

to be consumed in forming the solid electrolyte interphase (SEI) on the anode.   Thus, the full advantage of 

silicon cannot be realized because excess cathode material is needed to supply the lithium for SEI formation on 

the anode.        

Highlight.   This quarter, Task 1.2 (Cuiôs Group) has demonstrated the ability to prelithiate germanium and 

germanium oxide nanoparticles that can then be incorporated into a silicon electrode as a prelithiation agent. 
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Project Objective. Thicker electrodes with small levels of inactive components that can still deliver most of 

their energy at C-rates of C/3 should result in batteries of higher energy density.  Higher energy density should 

translate to more miles per charge or smaller, less expensive batteries.  Unfortunately, the limit to making 

thicker electrodes is not based on power capability but on mechanical capability, that is, the thicker electrodes 

delaminate from the current collector during calendering or slicing.  The objective of this research is to produce 

a high-energy-density electrode with typical Li-ion components that does not easily delaminate and still meets 

the EV power requirements through changes to the components and concomitant changes to the processing 

conditions.   

Project Impact. Todayôs batteries cost too much on a per kWh basis and have too low of an energy density to 

allow cars to be driven over 300 miles on a single charge.  The projectôs research addresses both problems 

simultaneously. By developing thicker, higher energy-density electrodes, the fraction of cost relegated to 

inactive components is reduced and the amount of energy that can be introduced to a small volume can be 

increased.  Macroscopic modeling suggests that this could have as much as a 20% impact on both numbers.    

Out-Year Goals. In the outgoing years, the project will make changes to the binder molecular weight, 

conductive additive, and size distribution of the active material and whatever changes are necessitated by 

electrode processing conditions to increase the energy density while maintaining power capability.  Changes in 

the processing conditions can include the time of mixing, the rate of casting, the temperature of the slurry during 

casting, drying conditions, and hot calendering.  Chemical modifications may include multiple binder molecular 

weights and changes in the conductive additive size and shape. 

Collaborations. This project collaborates with Zaghibôs group (HydroQuebec, HQ) for materials and cell 

testing; Wheelerôs group (Brigham Young University, BYU) for modeling analysis; Liuôs group (LBNL) on 

polymer properties; Arkema for binders; and a commercial cathode material supplier. 

Milestones 

1. Fabricate ñthickò laminates of NCM and establish the effect of calendering at different temperatures.   

(Q1 ï Complete) 

2. Determine to what extent electrode performance can be improved through the use of an active material of 

two particle size distributions. (Q2)  

3. Determine the degree to which several updates in materials and processing are affecting cyclability. (Q3) 

4. Go/No-Go.  Determine if a binder of a mixture of molecular weights is worth pursuing to achieve thicker 

electrodes based on ease of processing and level of performance.  If no, pursue a path of a single molecular 

weight binder. (Q4) 

  

Task 1.1 ï Higher Energy Density via Inactive Components and Processing Conditions 

(Vincent Battaglia, Lawrence Berkeley National Laboratory) 
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Progress Report 

Milestone 1 (Complete) ï Fabricate ñthickò laminates of NCM and establish the effect of calendering at 
different temperatures.  Electrodes were calendered between 25 and 125°C.  The electrode at 100°C showed 

slightly lower rate performance, but significantly better cycling performance.  

A single laminate of NCM of approximately 4 mAh/cm2 was 

fabricated and allowed to dry by natural convection in the 

glovebox.  Once dry, the calendering machine was turned on, and 

the temperature of the rollers was adjusted and allowed to come 

to equilibrium at several different temperatures (27, 50, 75, 100, 

and 125 oC).  A section of the laminate was calendered to the 

30% porosity at each of the different temperatures.  A scanning 

electron microscopy (SEM) image was taken of the compressed 

electrode.  The SEM revealed that for all of the electrodes, the 

secondary particles of NCM were flattened and, for some 

particles, cracked.  An example is provided in Figure 1, which 

shows the laminate calendered at 100oC.   

Once the electrodes were calendered, they were assembled in coin 

cells for electrochemical testing. The electrodes were put through 

a rate performance test and long-term cycling.  The rate tests 

revealed that the laminate calendered at 100oC showed the poorest 

rate capability at approximately 5 C (Figure 2).  The cell 

calendered at 100oC and a 5 C discharge rate was completely 

discharged in 3 minutes, instead of 12 minutes like the others.   

Once the rate performance test was completed, the cells were put 

on full charge and discharge cycling tests at C/3.  The electrodes 

calendered at 100oC cycled the best.  At 350 cycles, these 

electrodes only displayed a 12.5% capacity fade.  The others were 

very near to or greater than 20% capacity fade, which is 

considered end-of-life.   

The project continues to gather information regarding processing 

conditions.  Many findings, such as this one, require additional 

investigation.  It is not understood why the rate performance and 

the cycling performance would be counter to each other.  It could 

be speculated that the particles calendered at 100oC remain fully 

encapsulated by binder, which promotes cohesion among the 

particles but also limits the transport of salt to the active material 

surface.  Further investigation is needed.

 

 

Figure 1. Laminate calendered at 100oC to 
30% porosity.  Notice flattened and cracked 
particles. 

Figure 3.  Cycling performance. 

Figure 2.  Rate performance of a laminate 

calendered at different temperatures.  
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Project Objective.  Prelithiation of high-capacity electrode materials such as silicon is an important means to 

enable those materials in high-energy batteries. This study pursues two main directions: (1) developing facile 

and practical methods to increase first-cycle Coulombic efficiency (CE) of Li -ion batteries, and (2) synthesizing 

fully lithiated silicon and other lithium compounds for pre-storing lithium. 

Project Impact.  The first-cycle CE of lithium-ion batteries will be increased dramatically via prelithiation. 

Prelithiation of high-capacity electrode materials will enable those materials in next-generation, high-energy-

density batteries. This projectôs success will make high-energy-density Li -ion batteries for EVs. 

Out-Year Goals.  Compounds containing a large quantity of lithium will be synthesized for pre-storing 

lithium ions inside batteries. First-cycle CE (1st CE) will be improved and optimized (over 95%) by prelithiation 

with the synthesized Li-rich compounds. The stability of prelithiation reagents in the air conditions and solvents 

will be improved. 

Collaborations. The project works with the following collaborators: (1) BMR principal investigators (PIs), 

(2) Stanford Linear Accelerator Center (SLAC): in situ X-ray, Dr. Michael Toney, and (3) Stanford: mechanics, 

Professor Nix.  

Milestones 

1. Synthesize LiF/metal nanocomposite for cathode prelithiation with high capacity and good air stability 

(> 500 mAh/g). (March 2016 ï Complete) 

2. Synthesize Li xSi-Li 2O composites for anode prelithiation with improved stability in ambient air with 

40% relative humidity. (June 2016 ï Complete) 

3. Synthesize stabilized Li3N for cathode prelithiation with high capacity of > 1700 mAh/g.  

(September 2016 ï Complete) 

4. Synthesize Li xGe nanoparticles and LixGe-Li 2O composites for anode prelithiation with improved 

air-stability. (January 2017 ï In progress) 

Task 1.2 ï Prelithiation of Silicon Anode for High-Energy Lithium-Ion Batteries  

(Yi Cui, Stanford University)  
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Progress Report 

Previously, the project demonstrated that metallurgically synthesized LixSi nanoparticles (NPs) can serve as a 

high-capacity prelithiation reagent to effectively increase the 1st CE of anode materials. Group IV elements such 

as germanium have relatively high specific capacities (1640 mAh/g for Ge) and similar volumetric capacities 

to silicon (2574 mAh/cm3 for Si; 2275 mAh/cm3 for Ge), making them also suitable for pre-storing lithium. 

Ball-milled Ge NPs and GeO2 NPs were used as the starting materials to form Li xGe alloy and 

Li xGe-Li 2O composite materials, respectively. SEM was utilized to characterize the morphology of the Ge and 

GeO2 NPs before and after lithiation. After ball milling, the size of Ge NPs is in the range of 100 to 300 nm, 

while that of GeO2 NPs is in the range of 150 to 350 nm, as shown in Figure 4a/d. The sizes of the derived 

Li xGe alloy and Li xGe-Li 2O composite were larger than those of the starting materials because of the  

volume expansion (Figure 4b/e). 

X-ray diffraction (XRD) confirms 

the crystal-line nature of ball-milled 

Ge powder (PDF no. 00-004-0545) 

and a small portion of GeO2  

(PDF no. 00-036-1463) resulting 

from the high-energy ball-milling 

process in air (Figure 4c, upper). 

XRD confirms the complete 

transformation of Ge in both 

Ge powder and the intrinsic oxide 

GeO2 to crystalline Li 22Ge5 

(PDF no. 01-081-6059) during the 

thermal alloying process (Figure 4c, 

lower). The small peaks of Li2O 

(PDF no. 00-012-0254) come from 

the conversion of the small amount 

of intrinsic oxide GeO2. 

XRD analysis also shows the 

complete formation of crystalline 

Li 22Ge5 and Li2O during the thermal 

alloying process of GeO2 powder and 

molten lithium. To measure the 

prelithiation capacities of the  

Li xGe alloy and Li xGe-Li 2O 

composite, the electrodes were 

charged to 1.5 V directly at a slow 

rate of C/20 (1C = 1640 mA/g for  

Ge and 1126 mA/g for GeO2). The 

prelithiation capacities were  

1335 mAh/g and 892 mAh/g based 

on the masses of Ge and GeO2 in the 

electrode, respectively (Figure 4f). 

To test the air stability of LixGe, 

Li xGe NPs were exposed to ambient air (30% to 40% relative humidity) for 6 h, exhibiting a high extraction 

capacity of 947 mAh/g (30% capacity loss, Figure 4g). Although the specific capacity is relatively lower,  

Li xGe-Li 2O NPs exhibit superior ambient-air stability with a higher capacity retention of 85% (15% capacity 

loss) compared to bare Li xGe NPs. 

  

Figure 4. (a, b) Scanning electron microscopy (SEM) images of Ge nanoparticles (NPs)  
before (a) and after (b) thermal lithiation. (c) X-ray diffraction patterns of Ge NPs before 
(upper) and after (bottom) thermal lithiation. (d, e) SEM images of GeO2 NPs before (d) 
and after (e) thermal lithiation. (f) First-cycle delithiation capacities of lithiated Ge NPs 
(blue) and lithiated GeO2 NPs (red). The capacity is based on the mass of Ge or GeO2 in 
the anode. (g) First-cycle delithiation capacities of lithiated Ge NPs (blue) and lithiated 
GeO2 NPs (red) before (solid) and after (dash) exposure to ambient-air condition 
(30%~40% RH) for 6 h. 
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Patents/Publications/Presentations 

Publication 

ǐ Zhao, J. Sun, and A. Pei, K. Yan, G. Zhou, Y. Liu, D. Lin, and Y. Cui.*   ñA General Prelithiation Approach 

for Group IV Elements and Corresponding Oxides.ò JACS, under review.  
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Project Objective.  The project goal is to develop an electrode architecture based on nano-Si materials and 

design a full cell having high energy density and long cycle life. To achieve the objective, this project 

investigates the structure of nano-Si materials that provide acceptable volume change to achieve long cycle life, 

while still maintaining the high-capacity performance of silicon. The project scope includes control of the 

particle size distribution of nano-Si materials, crystallinity, silicon composition, and surface chemistry of the  

nano-Si materials. The focus is to develop electrode formulations and electrode architectures based on 

 nano-Si materials, which require optimized nano-Si/C composites and functional binders, as well as a 

controlled pore distribution in the electrode and the related process conditions to fabricate the electrode. 

Project Impact.  Silicon is a promising alternative anode material with a capacity of ~4200 mAh/g, which is 

more than a magnitude higher than that of graphite. However, many challenges remain unresolved, inhibiting 

commercialization of silicon; this is mainly due to the large volume variations of silicon during charge/discharge 

cycles that result in pulverization of the particle and poor cycling stability. Successful development of highly 

reversible silicon electrodes with acceptable cost will lead to higher-energy-density and lower-cost batteries 

that are in high demand, especially for expanding the market penetration for EVs.  

Approach.  The project approach will encompass the following:  

ǐ Explore various synthesis methods to produce low-cost, nano-Si materials with controlled purity and 

particle morphology.  

ǐ Develop an appropriate silicon anode architecture that can tolerate volumetric expansion and provide an 

acceptable cycle life with low capacity fade.  

ǐ Identify a binder and electrode composition by investigating parameters that define the electrode structure, 

such as porosity, loading, and electrode density. The optimized Si-anode will be matched with a 

high-voltage NMC cathode to fabricate large format Li-ion cells.  

ǐ Use in situ techniques such as SEM and impedance spectroscopy to monitor the particle and electrode 

environment changes during cycling.  

ǐ Achieve cost reduction by moving from more costly silicon (> $50/kg) to metallurgical silicon, which is 

projected to be $3~$5/kg.  

Out-Year Goals.  At this stage of the project, a major effort will be allocated to failure mode analysis of  

nano-Si anodes before and after cycling. Dual-beam (electron + ion) microscopy and TOF-SIM (Time-of-Flight 

Secondary Ion Mass Spectrometry) techniques will be used to analyze the residual lithium contents in the 

structure of delithiated nano-Si anodes. This analysis will help to understand the failure mode of the anode and 

help guide the effort to improve the particle morphology and the electrode architecture. 

Collaborations. This project collaborates with several BMR PIs: V. Battaglia and G. Liu (LBNL), C. Wong 

and Jason Zhang (Pacific Northwest National Laboratory, PNNL), and J. Goodenough (University of Texas, 

UT). 

Milestones 

1. Failure mode analysis of the nano-Si/C composite electrode before and after cycling. Improve the structure 

of the nano-Si/C composite based on the results of failure mode analysis. (March 2017 ï In progress)  

Task 1.3 ï Electrode Architecture-Assembly of Battery Materials and Electrodes  

(Karim Zaghib, HydroQuebec)  
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Progress Report 

Li -ion pouch laminated cells based on NMC//nano-Si/C composite with a capacity of 1.5 Ah were assembled 

(Figure 5a). The loadings are 2.2 and 10.3 mg/cm2 for the anode and cathode, respectively. The anode/cathode 

ratio was 1.15 based on the capacities obtained with the half cells of the cathode and anode materials. The 

electrochemical performance (formation capacity, rate capability and cycle stability) was evaluated. The 

capacity of the cell at 0.2C rate revealed a discharge capacity around 1400 mAh between 2.75 V and 4.4 V, 

which is 95% of the designed cell capacity (Figure 5b). 

 

 

Figure 5. Full cell performance of 1.5 Ah pouch-type cell: (a) assembled cell; (b) voltage profile during charge-discharge between 2.75 V 
and 4.4 V at 0.2C rate; (c) rate capability with different current; and (d) cycle life at room temperature. 

The rate capability of the cells was evaluated with different currents (0.1 to 2C). At 2C, the cell delivered 70% of 

the capacity obtained at 0.1C (Figure 5c). The voltage profiles showed similar behavior at the different rates, 

and the cells have low IR drop. However, the cycling stability of these cells shows high capacity fade 

(Figure 5d). During the 90 cycles, the capacity decreases continuously with cycle number, with a retention of 

just 40%. This capacity fade is attributed to the instability of the anode material. The loss of contact between 

silicon anode particles and the mechanical disintegration of the anode film are the main causes of this capacity 

fade. Post-mortem analysis is planned to improve understanding of the low cycling performance of this  

Li -ion cell chemistry.  
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Project Objective.  The project objective is to develop scalable, high-density, low-tortuosity electrode designs 

and fabrication processes enabling increased cell-level energy density compared to conventional 

Li -ion technology.  It will also characterize and optimize the electronic and ionic transport properties of 

controlled porosity and tortuosity cathodes as well as densely-sintered reference samples.  Success is measured 

by the area capacity (mAh/cm2) that is realized at defined C-rates or current densities.   

Project Impact.  The high cost ($/kWh) and low energy density of current automotive Li -ion technology is in 

part due to the need for thin electrodes and associated high inactive materials content.  If successful, this project 

will enable use of electrodes based on known families of cathode and anode actives, but with at least three times 

the areal capacity (mAh/cm2) of current technology while satisfying the duty cycles of vehicle applications.  

This will be accomplished via new electrode architectures fabricated by scalable methods with higher active 

materials density and reduced inactive content, and will in turn enable higher-energy-density and lower-cost 

EV cells and packs. 

Approach.  Two techniques are used to fabricate thick, high-density electrodes with low tortuosity porosity 

oriented normal to the electrode plane:  (1) directional freezing of aqueous suspensions; and (2) magnetic 

alignment.  Characterization includes measurement of single-phase material electronic and ionic transport using 

blocking and non-blocking electrodes with ac and dc techniques, electrokinetic measurements, and drive-cycle 

tests of electrodes using appropriate battery scaling factors for EVs. 

Out-Year Goals.  Identify anodes and fabrication approaches that enable full cells in which both electrodes 

have high area capacity under EV operating conditions.  Anode approach will include identifying compounds 

amenable to same fabrication approach as cathode, or use of very high capacity anodes such as stabilized lithium 

or Si-alloys that in conventional form can capacity-match the cathodes.  Use data from best-performing 

electrochemical couple in techno-economic modeling of EV cell and pack performance parameters. 

Collaborations. Within BMR, this project collaborates with Antoni P. Tomsia (LBNL) in fabrication of 

low-tortuosity, high-density electrodes by directional freeze-casting, and with Gao Liu (LBNL) in evaluating 

silicon anodes.  Externally, the project collaborates with Randall Erb (Northeastern University) on magnetic 

alignment fabrication methods for low-tortuosity electrodes. 

Milestones 

1. Go/No-Go: Fabricate and test half-cells and full Li -ion cell in which both cathode and anode are prepared 

by magnetic alignment, and in which at least one electrode is prepared by non-sintering process. Criteria: 

Measured area capacity of a half-cell is at least 10 mAh/cm2 and of a full cell is at least 8 mAh/cm2. 

(December 2016 ï Complete) 

Task 1.4 ï Design and Scalable Assembly of High-Density, Low-Tortuosity Electrodes  

(Yet-Ming Chiang, Massachusetts Institute of Technology)  
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Progress Report 

Go/No-Go Milestone. Fabricate and test half-cells and full Li -ion cell in which both cathode and anode are 

prepared by magnetic alignment, and in which at least one electrode is prepared by non-sintering process. 

Measured area capacity of a half-cell is at least 10 mAh/cm2 and of a full cell is at least 8 mAh/cm2. 

This quarter, results are reported for half-cells containing LiCoO2 (Umicore) cathodes and MCMB 6-28 (Osaka 

Gas) anodes, respectively, that are prepared by non-sintering magnetic alignment process. Results of full 

Li -ion cells consisting of LiCoO2 cathode and MCMB anode are also reported.  

 

Figure 6. Electrochemical test results of half-cells and full cells that contain electrodes prepared by non-sintering magnetic alignment 
process. (a) Voltage versus areal capacity plot of a LCO cathode. (b) Voltage versus areal capacity plot of a MCMB graphite anode. 
(c) Charge-discharge voltage profile of a LCO-MCMB full cell. 

Figure 6a shows the first-cycle charge-discharge voltage versus areal capacity profile of a low-tortuosity 

LiCoO2 cathode (430 ɛm in thickness, LCO:carbon black:binder = 95:2.5:2.5). This electrode was first charged 

at 1/15 C to 4.2 V and then held at 4.2 V until the current dropped to 1/40 C. Then the LCO electrode was 

discharged at 1/15 C to a low cut-off voltage of 2.5 V, which delivered 12.58 mAh/cm2
 areal capacity, 96.4% of 

its theoretical areal capacity. Figure 6b shows the first-cycle lithiation-delithiation voltage versus capacity 

profile of the low-tortuosity MCMB anode (MCMB:carbon black:binder = 96:2:2). This electrode was lithiated 

at C/20 to 10 mV and then delithiated to 1.5 V, which delivered 11.01 mAh/cm2 areal capacity.  

Figure 6c shows the first charge-discharge voltage profile of a LCO-MCMB full cell tested at C/20. Both 

electrodes were prepared by the emulsion-based magnetic alignment approach. The LCO cathode is 429 ɛm in 

thickness and has a theoretical areal capacity of 13.3 mAh/cm2. The MCMB anode is 419 ɛm in thickness and 

has a slightly higher theoretical areal capacity of 16.4 mAh/cm2, so that the AC ratio is ~1.23:1. Upon charge 

to 4.2 V (CC-CV charge), the LCO-MCMB full cell reaches a capacity of 145 mAh/g (calculated based on the 

weight of the LCO cathode). However, during discharge the full cell only delivers a capacity of 95.1 mAh/g, 

~66% of the charge capacity. Based on the result from the MCMB-Li half-cell test (Figure 6b), the first-cycle 

capacity loss of the full cell should mostly be attributed to the loss at the MCMB anode, which clearly requires 

further improvement. Nevertheless, the LCO-MCMB full cell delivers an areal capacity of 9.06 mAh/cm2. The 

results above meet this quarterôs Go/No Go milestone.  
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Task 2 ð Silicon Anode Research 
Summary and Highlights 

Most Li-ion batteries used in state-of-the-art EVs contain graphite as their anode material.  Limited capacity of 

graphite (LiC6, 372 mAh/g) is one barrier that prevents the long-range operation of EVs required by the 

EV Everywhere Grand Challenge proposed by the DOE Office of Energy Efficiency & Renewable Energy 

(EERE).  In this regard, silicon is one of the most promising candidates as an alternative anode for Li-ion battery 

applications.  Silicon is environmentally benign and ubiquitous.  The theoretical specific capacity of silicon is 

4212 mAh/g (Li21Si5), which is 10 times greater than the specific capacity of graphite.  However, the high 

specific capacity of silicon is associated with large volume changes (more than 300 percent) when alloyed with 

lithium.  These extreme volume changes can cause severe cracking and disintegration of the electrode and can 

lead to significant capacity loss.   

Significant scientific research has been conducted to circumvent the deterioration of Si-based anode materials 

during cycling.  Various strategies, such as reduction of particle size, generation of active/inactive composites, 

fabrication of Si-based thin films, use of alternative binders, and the synthesis of  

one-dimensional silicon nanostructures have been implemented by several research groups.  Fundamental 

mechanistic research also has been performed to better understand the electrochemical lithiation and delithiation 

processes during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction 

kinetics.  Although significant progress has been made on developing Si-based anodes, many obstacles still 

prevent their practical application.  Long-term cycling stability remains the foremost challenge for Si-based 

anode, especially for the high loading electrode (> 3mAh/cm2) required for many practical applications.   The 

cyclability of full cells using Si-based anodes is also complicated by multiple factors, such as diffusion-induced 

stress and fracture,  loss of electrical contact among silicon particles and between silicon and current collector, 

and the breakdown of SEI layers during volume expansion/contraction processes.  The design and engineering 

of a full cell with a Si-based anode still needs to be optimized.  Critical research remaining in this area includes, 

but is not limited to, the following:  

ǐ Low-cost manufacturing processes must be found to produce nano-structured silicon with the desired 

properties.  

ǐ The effects of SEI formation and stability on the cyclability of Si-based anodes need to be further 

investigated.  Electrolytes and additives that can produce a stable SEI layer need to be developed.   

ǐ A better binder and a conductive matrix need to be developed.  They should provide flexible but stable 

electrical contacts among silicon particles and between particles and the current collector under repeated 

volume changes during charge/discharge processes. 

ǐ The performances of full cells using silicon-based anode need to be investigated and optimized. 

The main goal of this project is to have a fundamental understanding on the failure mechanism on Si-based 

anode and improve its long-term stability, especially for thick electrode operated at full-cell conditions. Success 

of this project will enable Li-ion batteries with a specific energy of >350 Wh/kg (in cell level), 1000 deep-

discharge cycles, 15-year calendar life, and less than 20% capacity fade over a 10-year period to meet the goal 

of the EV Everywhere Grand Challenge. 

Highlight.   The PNNL group developed a low-temperature thermite reaction (~ 300ºC) method to synthesis 

porous silicon anode with stable cyclability.
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Project Objective.  This project will synthesize Si/C anode composite materials at 1,000 mAh/g capacity at a 

cost less than $10/kg and fabricate a long-cycle-life electrode similar to a graphite electrode for 

high-energy-density Li -ion batteries. 

Project Impact.  Low energy density and limited lifetime are two major drawbacks of the automobile 

Li -ion batteries for EV and plug-in hybrid electric vehicle (PHEV) applications. The project will develop high-

capacity and long-life Si/C composite anodes to prolong battery cycling and storage lifetime, and to provide an 

in-depth understanding of silicon electrode design strategies to stabilize silicon material volume change and to 

prevent surface side reactions. This research effort will generate new intellectual properties based on the 

fundamental discovery of novel materials and new synthesis processes, and will  bridge the R&D gaps between 

the fundamental research and the applied materials discovery, to pave the way for the successful 

commercialization of silicon materials. 

Approach.  This work combines novel materials design and innovative synthesis process to synthesize 

mechanically robust and dimensionally stable Si/C composite materials. In addition, it will use low-cost 

Si/C precursor materials and a scalable process to generate low-cost Si/C product.  

Out-Year Goals.  The work progresses toward study of the physical and chemical properties and of 

electrochemical properties of the low-cost precursor materials. Novel synthesis strategy will be developed and 

used to fabricate materials to tailor the morphology, structure, composite component, and electrochemical 

properties of the Si/C composite materials. The morphologic and structural features and electrochemical 

properties will be characterized for the as-prepared Si/C composited with functional binder  

during electrochemical testing. The goal is to achieve a high-capacity, long-life Li -ion battery using this 

Si/C composite anode. 

Collaborations.  This project is a single investigator project. However, the proposed work requires extensive 

collaboration with DOE user facilities at national laboratories and industries.  These include the National Center 

for Electron Microscopy (NCEM) and the Advance Light Sources (ALS) program at LBNL, 

in situ electrochemical transmission electron microscopy (TEM) facilities at the Environmental Molecular 

Sciences Laboratory (EMSL), the national user facility at PNNL, IREQ General Motors (GM) R&D Center, 

and LBNL BMR laboratories.  The project will also involve collaboration with BMR participants at LBNL, 

including Dr. Marca Doeffôs group and Dr. Vince Battagliaôs group. 

Milestones 

1. Set up the silicon materials and carbon precursors library, and finish characterizing the starting materials. 

(December 2016 ï Complete) 

2. Conduct preliminary tests to generate Si/C composite particles with the spray methods. (March 2017 ï 

In progress)  

3. Electron microscopy image analyses of the Si/C samples and development of functional binders based on 

Si/C composite structures. (June 2017)   

4. Electrochemical analysis to demonstrate > 1000 mAh/g and > 3 mAh/cm2 of the Si/C composite electrodes. 

(September 2017)   

Task 2.1 ïHigh-Capacity and Long Cycle Life Silicon Carbon Composite Materials and Electrodes  

(Gao Liu, Lawrence Berkeley National Laboratory) 
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Progress Report 

The Si/C materials library has been established, including a wide size-range of silicon particles and various 

types of organics as carbon precursors. Figure 7 is an example of the silicon materials library. The initial 

materials library will be enriched during this project as new silicon materials and organic precursors become 

available on the market and in the literature. Nano- to micro-scale silicon powders of diameters from 20 nm to 

10 ɛm have been acquired for this project. The silicon materials also have different levels of purity, ranging 

from metallurgic grade to high pure 

samples. The silicon samples come with 

different morphologies, as shown in 

Figure 8 (increasing particle size, 8a-d). 

However, samples a/b are fused 

nano-particles, while samples c/d are 

separated micron-size particles. The 

electrochemical properties of these 

silicon materials are being evaluated. The 

binders being considered for this work 

include LBNLôs functional conductive 

polymer binders, industrial binders such  

as CMC, PVDF, and another commonly 

used binder, PAA. Various organics  

and polymers were selected as the  

carbon precursors. Figure 9 shows 

high-temperature decomposition of selected 

organics under thermogravimetric analysis (TGA) evaluation. 

 

 

 

 
 

 

 

Figure 9. Thermogravimetric analysis of a few carbon 
precursor candidates, at a heating rate of 5°C/min from room 
temperature to 800°C, under nitrogen atmosphere. 

Chemical 

Name 
type Particle size Purity  Vendor 

Silicon 

Nanopowder  

Nano 

Powder 
30-50 nm 98% 

Nanostructured 

& Amorphous 

Materials Inc. 

Silicon 

Nanopowder  

Nano 

Powder 
50-70 nm 98% 

Nanostructured 

& Amorphous 

Materials Inc. 

Silicon 

Nanopowder  

Nano-

Micro 

Powder 

70-130 nm 99% 

Nanostructured 

& Amorphous 

Materials Inc. 

Silicon (Si) 

Powder 

Micro 

Powder 
1Õm 99% 

US Research 

Materials Inc. 

Silicon (Si) 

Powder 

Micro 

Powder 
1Õm 99.99% 

US Research 

Materials Inc. 

a b 

c d 

500 nm 500 nm 
 

5 Õm 10 Õm 

Figure 8. Silicon particles of different average diameter sizes:  
(a) 30-50 nm, (b) 50-70 nm, (c) 70-130 nm, and (d) 1ɜm. 

Figure 7. Sample silicon materials library. 



Task 2.2 ï Zhang/Liu, PNNL; Kumta, U Pittsburgh  

BMR Quarterly Report 14 FY 2017  Q1 (v. 27 Mar 2017) 

 

 

Project Objective.  The project objective is to develop high-capacity and low-cost Si-based anodes with good 

cycle stability and rate capability to replace graphite in Li -ion batteries.  In one approach, the low-cost 

Si-graphite-carbon (SGC) composite will be developed to improve long-term cycling performance while 

maintaining a reasonably high capacity. Si-based secondary particles with a nano-Si content of ~10 to 15 wt% 

will be embedded in the matrix of active graphite and inactive conductive carbon materials. Controlled void 

space will be pre-created to accommodate the volume change of silicon.  A layer of highly graphitized carbon 

coating at the outside will be developed to minimize the contact between silicon and electrolyte, and hence 

minimize the electrolyte decomposition. New electrolyte additives will be investigated to improve the stability 

of the SEI layer.  In another approach, nanoscale silicon and Li -ion conducting lithium oxide composites will 

be prepared by in situ chemical reduction methods.  The stability of Si-based anode will be improved by 

generating the desired nanocomposites containing nanostructured amorphous or nanocrystalline silicon as well 

as amorphous or crystalline lithium oxide (Si+Li2O) by the direct chemical reduction of a mixture and variety 

of silicon sub oxides (SiO and SiOx) and/or dioxides. Different synthesis approaches comprising direct chemical 

reduction using solution, solid-state, and liquid-vapor phase methods will be utilized to generate the  

Si+Li2O nanocomposites. The electrode structures will be modified to enable high utilization of thick electrode. 

Project Impact.  Si-based anodes have much larger specific capacities compared with conventional graphite 

anodes.  However, the cyclability of Si-based anodes is limited because of the large volume expansion 

characteristic of these anodes.  This work will develop a low-cost approach to extend the cycle life of 

high-capacity, Si-based anodes.  The success of this work will further increase the energy density of 

Li -ion batteries and accelerate market acceptance of EVs, especially for the PHEVs required by the 

EV Everywhere Grand Challenge.  

Out-Year Goals.  The main goal of the proposed work is to enable Li-ion batteries with a specific energy of  

> 200 Wh/kg (in cell level for PHEVs), 5000 deep-discharge cycles, 15-year calendar life, improved abuse 

tolerance, and less than 20% capacity fade over a 10-year period. 

Collaborations.  This project collaborates with Xingcheng Xiao (GM):  In situ measurement of thickness 

swelling silicon anode. 

Milestones 

1. Synthesize micron-sized silicon with the desired porosity and in situ grown graphene coating.  

(Q1 ï In progress) 

2. Synthesize low-cost Si-based nanocomposite anode materials using high-energy mechanical milling 

(HEMM) and other economical template derived methods. (Q2 ï In progress) 

3. Identify new electrolyte additive to improve the stable operation of Si-based anode.  (Q3)   

4. Fabricate and characterize Si-based anode with desired electrode capacity (~3 mAh/cm2). (Q4)

Task 2.2 ï Development of Silicon-Based High-Capacity Anodes  
(Ji-Guang Zhang and Jun Liu, Pacific Northwest National Laboratory; Prashant Kumta,  

University of Pittsburgh) 
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Progress Report 

This quarter, the swelling of the porous-Si-graphite composite electrode was investigated. First, through 

collaboration with the GM team, electrode swelling was measured by in situ electrochemical dilatometer. The 

electrode loading is ~3 mAh cm-2 with porous Si/C and 

graphite in 1:2 ratio. Figure 10 shows the charge-discharge 

profiles (black curves) and the electrode thickness change (red 

curves). Initial electrode swelling is ~ 20% after full lithiation 

and ~ 7% after delithiation. The ex situ SEM study further 

corroborates that the composite electrodes have limited 

swelling upon cycling. The pristine electrode before cycling 

has a thickness of ~ 72 mm. The cycled electrode at lithiated 

state is ~90 mm thickness, while ~ 80 mm at delithiated state. 

The electrode swelling at delithiated and lithiated state is 

~ 11% and 25%, respectively. Calendering effect to the 

electrode performance was also investigated. The electrode can 

be calendered to a density of ~1.5 g/cc. The porous silicon 

structure can be maintained after calendering. Hence, 

electrochemical performance was not affected significantly by 

calendering. The electrode after calendering still shows good 

cycling stability, with capacity retention of ~ 90% after 

200 cycles. In another effect, a low-temperature thermite 

reaction was developed. The reaction initiating temperature can 

be as low as 300ºC by adding selected salt into the reaction 

system. Preliminary results (Figure 11) show that the porous 

silicon obtained can deliver a high specific capacity of 

~ 2100 mAh/g and good cycling stability of ~ 85% retention 

over 100 cycles.  

Electrochemically active silicon was obtained by the reduction of silicon precursor (SiX) utilizing inorganic 

reductants (IR) by a low-temperature, solid-state reduction (LTSR) approach. Commercially obtained 

(~ 40 mm) IR was ball milled for 2 h in argon atmosphere to reduce particle size to below 2 mm. A homogenous 

mixture of HEMM derived IR (~ 2 mm) and supporting precursor serving as a flux along with stoichiometric 

amount of SiX was sealed in stainless steel autoclave in argon atmosphere. The sealed mixture was heated and 

maintained at 200oC for 6 h to complete the reaction. The XRD pattern of the heat-treated mixture indicates 

formation of silicon, but no peaks corresponding to IR after reduction of SiX at 200oC for 6 h. The undesired 

intermediate phases were dissolved in 1M HCl to obtain silicon. The high reaction conversion  

efficiency (~ 90 - 95%) of this approach shows its potential 

commercial viability.  

The LTSR-derived silicon was then embeded in carbon 

nanofibers (CNF) using a solution coating technique followed by 

thermally induced carbonization at 700oC for 1 h and then 

followed by testing as an active anode material for  

Li -ion application.  At a current rate of ~ 50 mA/g, the  

Si/CNF material showed a first-cycle discharge and charge 

capacity of ~ 2870 mAh/g and ~ 2067 mAh/g, respectively, with  

first-cycle irreversible loss of ~ 25 - 30%. During initial cycles of 

the long-term cycle test (Figure 12), Si/CNF show a capacity of 

~ 2161 mAh/g and ~ 1210 mAh/g at current rates of 0.3 A/g and 

1 A/g, respectively. More efforts are in progress to further 

improve stability of this promising Si-based anode material.  

Figure 10. In situ measurement of the electrode 
swelling upon discharge-discharge process. 

Figure 11. Cycling performance of porous silicon 

obtained by the low-temperature thermite reaction. 

Figure 12. Specific discharge capacity versus cycle 
numbers for the low-temperature, solid-state 
reduction (LTSR) approach derived silicon/carbon-
nanofiber nanocomposite. The current rate for first 
three cycles is 300 mA/g and for the remaining 
cycles is 1 A/g. 


