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A MESSAGE FROM THE ADVANCED BATTERY  
MATERIALS RESEARCH PROGRAM MANAGER 

 

This report summarizes the results of research investigations performed in the ten, BMR topic areas, namely 

cell analysis, silicon anodes, advanced cathodes, liquid electrolytes, diagnostics, electrode modeling, metallic 

lithium and solid electrolytes, lithium sulfur batteries, lithium air batteries, and sodium ion batteries.  The 

work was performed during the period from April  1, 2015, through June 30, 2015. 

A few selected highlights from the BMR projects are summarized below: 

ǐ MIT (Cederôs Group) used the concept of designing an off-stoichiometric glassy coating on olivine 

cathodes to solve the rate problems with LiFe0.6Mn0.4PO4 cathodes.  The resulting material shows a 

capacity of 165mAh/g at low rates with greater than 100 mAh/g at a 60C rate.   

ǐ Brigham Young University (Wheelerôs Group) is developing methods to measure the electronic 
conductivity of composite electrodes and has designed a method to measure the anisotropy in 

conductivity between the in-plane and out-of-plane directions.  Using layered material based cathodes, 

the Group has shown that the out-of-plane conductivity is a factor of two lower than the in-plane 

directions, suggesting that further electrode improvements are needed. 

ǐ Lawrence Berkeley National Laboratory (Chenôs Group) identified the crystal structure of Li- and Mn-

rich layered oxide crystals by using complementary microscopy and spectroscopy techniques at multi-

length scale.   

ǐ  Lawrence Berkeley National Laboratory (Kosteckiôs Group) demonstrated that transition metal 

complexes cause impedance increase of the graphite anode by inhibiting Li
+
 transport within the solid 

electrolyte interface. 

ǐ Cambridge University (Greyôs Group) developed 23
Na in situ NMR to study Na metal anode in 

sodium-ion batteries. 

ǐ University of California, San Diego (Mengôs Group) showed that FEC additive improves Si anode 

cycling by forming uniform and stable SEI that covers the LixSi particles with a high LiF content. 

ǐ Pacific Northwest National Laboratory (Wangôs Group) demonstrated atomic-resolution visualization 

of ion mixing between transition metals (Ni, Co, Mn) and lithium in layered oxide cathodes using 

aberration corrected STEM imaging and DFT calculations.   

ǐ Argonne National Laboratory (Thackerayôs Group) developed model systems to investigate the 

migration mechanisms of cations (M and Mô) in Li1+x(MMô)1-xO2 cathodes and to understand the 

connection between experiment and theory. 

ǐ Oak Ridge National Laboratory (Nandaôs Group) stabilized a high-capacity cathode composition, 

Li 2Cu0.5Ni0.5O2, and showed that 50 % nickel substitution improved the electrochemical retention and 

stability compared to Li2CuO2. 

ǐ Brookhaven National Laboratory (Patrick Looney, Feng Wang Team) developed a micro-reactor that 

enables combinatorial screening of a large number if cathode compositions by varying synthesis 

parameters. The initial investigation was the Ŭ-CuVO3 cathode. 

ǐ Argonne National Laboratory (Zhangôs Group) developed a fluorinated PC-based high-voltage 

electrolyte for 5-V LiNi 0.5Ni1.5O4 spinel cathode that has high compatibility with graphite and 

enhanced thermal stability. 
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Our next BMR quarterly report will cover the progress made during July through September and will be 

available December 2015. 

 

Sincerely, 

 

Tien Q.  Duong  

 

Manager, Advanced Battery Materials Research (BMR) Program 

Energy Storage R&D 

Office of Vehicle Technologies 

Energy Efficiency and Renewable Energy 

U.S. Department of Energy 
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TASK 1 ð ADVANCED ELECTRODE ARCHITECTURES 

Summary and Highlights 

Energy density is a critical characterization parameter for batteries for electric vehicles, given the limited 

space for the battery and requirements for travel of more than 200 miles.  The DOE targets are 500 Wh/L on a 

system basis and 750 Wh/L on a cell basis.  Not only do the batteries have to have high energy density, they 

must also still deliver 1000 Wh/L for 30 seconds on the system level.  To meet these requirements not only 

entails finding new, high energy density electrochemical couples, but also highly efficient electrode structures 

that minimize inactive material content, allow for expansion and contraction from one to several thousand 

cycles, and allow full access to the active materials by the electrolyte during pulse discharges.  In that vein, 

the DOE OVT supports five projects in the BMR Program under Electrode Architectures: (1) Physical, 

Chemical, and Electrochemical Failure Analysis of Electrodes and Cells at LBNL, (2) Assembly of Battery 

Materials and Electrodes at HQ, (3) Design and Scalable Assembly of High-density, Low-tortuosity 

Electrodes at MIT, (4) Hierarchical Assembly of Inorganic/Organic Hybrid Si Negative Electrodes at LBNL, 

and (5) Studies in Advanced Electrode Fabrication at LBNL.   

One of the more promising active materials for higher energy-density Li-ion batteries is Si used as the anode.  

It has a specific capacity of over 3500 mAh/g and an average voltage during delithiation of 0.4 V vs. the 

Li/Li+ electrode.  This material suffers from two major problems both associated with the 300% volume 

change the material experiences as it goes from a fully delithiated state to a fully lithiated one: (1) the volume 

change results in a change in exposed surface area to electrolyte during cycling that consumes electrolyte and 

results in a lithium imbalance between the two electrodes, and (2) the volume change causes the particles to 

become electrically disconnected (which is further enhanced if particle fracturing also occurs) during cycling. 

Tasks 2, 4, and 5 are focused on Si to make it a more robust electrode by finding better binders.   

Another approach to higher energy density is to make the electrodes thicker.  The problem with thicker 

electrodes is that the salt in the electrolyte has to travel a farther distance to meet the current needs of the 

entire electrode throughout the discharge.  If the salt cannot reach the back of the electrode at the discharge 

rates required of batteries for automobiles, the battery is said to be running at its limiting current.  If the 

diffusional path through the electrode is tortuous or the volume for electrolyte is too low, the limiting current 

is reduced. The other problem with thicker electrodes is that they tend to not cycle as well as thinner 

electrodes and thus reach the end-of-life condition sooner, delivering fewer cycles. Tasks 1, 3, and 5 are 

focused on increasing the limiting current of thick electrodes while maintaining cycleability through the 

fabrication of less tortuous electrodes or of electrodes with less binder and more room for electrolyte.   

If these projects are successful, they will result in a 25% increase in energy density as a result of replacing 

graphite with Si, and another 20% increase in energy density by moving from 2 mAh/cm2 electrodes to 4 

mAh/cm2 electrodes.  This would result in a net increase of 50% in energy density of the cell, and so a battery 

that once allowed a vehicle to travel only 200 miles may now allow travel of 300 miles. 
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Project Objective. This project investigates failure modes of targeted chemistries as defined by the BMR 

Program and its Focus Groups.  The emphasis of this effort for 2015 will be on the High-Voltage and Si 

Anode Focus Groups.  The objectives are to identify and quantify the chemical and physical aspects of cell 

cycling and aging that lead to reduced electrochemical performance.  Specifically, research will focus on the 

effects on material stability as a result of increasing the cell voltage of Graphite/NCM cells from 4.2 V to 4.7 

V.  In addition, differences in performance between Graphite/NCM and Si/NCM will be investigated.  

Specifically, investigations into the differences in cell performance as a result of Coulombic inefficiencies and 

the effects of increased electrode loadings on cycleability will be carried out.   

Project Impact. Success with understanding and improving the stability of NCM in the presence of 

electrolyte at voltages greater than 4.3 V vs. Li/Li+ will translate to an increase in capacity and voltage and 

hence a compounding improvement in energy density by as much as 45%.  Improvement in the loading of 

anodes and cathodes from 2 to 5 mAh/cm2 could result in larger fractions of active materials in cells and a 

projected increase in energy density by an additional 20%. 

Out-year Goals. Provide a prescription of the physical and structural properties required to increase the 

accessible capacity of layered oxide materials.  Demonstrate high loading cells with an increased energy 

density of 20% with no change in chemistry or operating parameters. 

Collaborations.  This project engages in collaborations with many BMR principal investigators. 

Milestones 

1. Measure and report the difference in capacity fade in mAh/h between LCO and HV-LCO at 4.3 V in 

mAh/h. (12/31/14  Complete) 

2. Identify and report the electrochemical phenomena responsible for the capacity fade of the LCO and 

HV-LCO cells at 4.3 V. (3/31/15  Complete) 

3. Measure and report the phenomena responsible for the capacity fade of a 3 mAh/cm2 cell in mAh/h. 

(6/30/15  Ongoing) 

4. Measure and report the self-discharge rate of the baseline Li/S cell in mA/(g of S) and decide if this is an 

appropriate baseline design. (9/30/15  Ongoing) 

Task 1.1 ï Physical, Chemical, and Electrochemical Failure Analysis of Electrodes and Cells 

(Vincent Battaglia, Lawrence Berkeley National Laboratory) 
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Progress Report 

Milestone 3. Measure and report the phenomena responsible for the capacity fade of a 3 mAh/cm2 cell 

in mAh/h. 

Research in the area of higher loading electrodes is now set to begin in the October at the beginning of the 

next fiscal year.  For the rest of this fiscal year, research will be focused on completing the bench-marking of 

cathodes and electrolytes at high voltage.  In this quarter, the baseline electrolyte (1M LiPF6 in EC:DEC 1:2) 

was tested in a NCM half-cell and compared side-by-side to a ñhigh-voltageò electrolyte from Daikin-

America in a cell of the same chemistry.  Both cells were cycled to 4.5 upper cut-off voltage.  The cycling 

data of the baseline electrolyte is provided in Figure 1. The cell shows very good capacity retention for the 

first 100 cycles. Similar cycling data of the high-voltage electrolyte is provided in Figure 2.   This cell also 

shows excellent cycling performance for the first 100 cycles.  The difference in capacity is just 1.7%, which is 

approximately 0.017% per cycle. 

  

Figure 1. Capacity versus cycle number of a half 
cell of NCM cycled between 2.8 and 4.5 v with 
baseline electrolyte. 

Figure 2.  Capacity versus cycle number of a  
half cell of NCM cycled between 2.8 and 4.5 v  
with high voltage electrolyte. 

A bigger difference in the two electrolytes can be observed when the voltage curves versus capacity are 

superimposed on each other (Figures 3 and 4).  Here we see the side reaction in the cell with baseline 

electrolyte is resulting in an exaggerated sliding to the right of the voltage curves with each cycle. The sliding 

is at a rate of 0.27% per cycle, which is ca. 15 times greater than the rate of fade of the cell.  Next quarter the 

electrolytes will be tested in full cells. In most full cells, we have seen capacity sliding of the anode at a rate 

of ca. 0.2% per cycle.  It will be interesting to see if the sliding of the cathode, or lack thereof, helps or hurts 

the capacity fade of the full cell. 

  

Figure 3. Superimposed voltage curves for 
baseline electrolyte. 

Figure 4. Superimposed voltage curves for high- 
voltage electrolyte. 
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Project Objective.  The project objective is to develop high-capacity, low-cost electrodes with good cycle 

stability and rate capability to replace graphite in Li-ion batteries. 

The aim is to overcome the limit of electrochemical capacity (both gravimetric and volumetric) of 

conventional carbon anodes. This will be achieved by developing low-cost electrodes that utilize a high-

capacity material such as silicon. Controlling the composition (that is, loading of the active material, ratio of 

binder and carbon additive) of the electrode will yield a more tolerant anode with acceptable volume change, 

useful cycle life, and low capacity fade. A high-energy, large-format, Li -ion cell will be produced using 

optimized Si-based anode and high-energy cathode electrodes. 

Project Impact.  Production of Si nano-powder using commercially scalable and affordable methods will 

justify replacing the graphite anode without jeopardizing the cost structure of conventional batteries. In 

addition, the energy density of cells is increased to > 250 Wh/kg by using a high content of Si (> 50%) with 

reasonable loading (2 mAh/cm2). The results obtained in large-format cells (> 20Ah) will enable us to study 

the wide spectrum of electrochemical performance under actual vehicle operation conditions. 

Out-Year Goals.  Out-year goals include the following: 

ǐ Complete the optimization of the electrode composition by varying the carbon additive ratio and the 

type of carbon. In addition to in situ SEM analyses, in situ impedance spectroscopy will be employed 

to enhance the understanding of capacity fade of the Si-material. These analyses will clarify the 

mechanism leading to electrode failure and guide further improvement and design of the electrode 

architecture.  

ǐ Complete optimization of the method to synthesize Si-nano powder developed at HQ. 

ǐ As a final goal, the optimized Si-anode and high-energy cathode will be coated in the pilot line and 

then assembled in large-format cells (> 20Ah) using the new automatic stacking machine at HQ.  

Collaborations.  This project collaborates with BMR members: V. Battaglia and G. Liu from LBNL, 

C. Wong and Z. Jiguang from PNNL, and J. Goodenough from the University of Texas. 

Milestones 

1. Complete optimization of the nano-Si-anode formulation. (12/31/14  Complete) 

2. Complete optimization of the synthesis of nano-size Si developed at HQ. Go/No-Go decision: Terminate 

the Si synthesis effort if the capacity is less than 1200 mAh/g. (3/31/15  Complete) 

3. Produce and supply laminate films of Si-anode and LMNO-cathode (10 m) to BMR principal 

investigators. (6/30/15  Complete) 

4. Produce and supply large-format 20 Ah high-energy stacking cells (4) to BMR principal investigators. 

(9/30/15  Ongoing) 

Task 1.2 ï Electrode Architecture-Assembly of Battery Materials and Electrodes  

(Karim Zaghib, HydroQuebec) 
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Progress Report 

After the last quarterly report, Hydro-Quebec focused on increasing the loading of the anode to greater than 

2 mg/cm
2
 of total solids content. This goal was set in order to reach a specific energy density of 250Wh/kg for 

a full cell when combined with an NCM cathode. From our extensive studies, it was discovered that at low 

loading levels (<0.5 mg/cm
2
) the cycle life at 40% DOD cycling in half-cells exceeded 900 cycles. However, 

if the loading level was increased, the capacity retention decreased dramatically: 260 cycles at 1.0 mg/cm
2
 

and 120 cycles at 1.26 mg/cm
2
.  

In the previous report, we reported that a water-base binder showed a huge amount of gas generated during 

the mixing and coating processes. To overcome this barrier, the nano-Si particlesô surface was pre-coated 

with poly acrylic acid (PAA) by using a spray-dry technique. The gas generation was suppressed; however, 

the retention of cycle life (Figure 5c) was less than the reference anode without the PAA coating (Figure 5b 

compared to 5c).  

 

 

Figure 5. Cycle life of Li/Si cells with different materials: (a) 
nano-Si/PAA/C, (b) nano-Si/C simple mixing, and  
(c) nano-Si/PAA composites made by spray-drying.  

Figure 6. Photos of anode powders (a) nano-Si, (b) nano-Si/PAA/C 

composite. 

To increase the cycle life of the anode, in a second trial with PAA treatment, the carbon additive was 

premixed with the nano-Si and PAA, and then spray-dried, followed by heat-treatment at 200°C in vacuum 

for 12 hours. A nano-Si/PAA/C composite with a secondary particle size of 1 to 10 µm (Figure 6b) was 

obtained. The Si-anode based on this process demonstrated respectable improvement in cycle life (Figure 5a) 

and even exceeded the performance of the reference anode, which was obtained by simply mixing the nano-Si 

and carbon additive. The reversible capacity of the nano-Si/PAA/C composite increased by nearly a factor of 

two compared to the Si/PAA composite, and by a factor of 1.25 of the reference nano-Si/C. After resolving 

the problem of gas generation and improving the performance of the Si-anode, efforts were again directed at 

increasing the loading of the anode. Electrodes with a loading of ca. 3mAh/cm
2
 were attempted, but the 

adhesion strength of the laminate to the current collector was found to be poor. Focus will now turn to 

increasing the adhesion strength of this nano-Si/PAA/C composite electrode. Towards this goal, alternative 

binders such as polyimide-type will be investigated to increase the anode performance both electrochemically 

and mechanically.  

Deliverable: As our second deliverable, 10 m of nano-Si anode containing a polyimide binder was supplied to 

LBNL for evaluation.  
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PROJECT OBJECTIVE: The project objective is to develop scalable, high-density, low-tortuosity electrode 

designs and fabrication processes enabling increased cell-level energy density compared to conventional Li-

ion technology, and to characterize and optimize the electronic and ionic transport properties of controlled 

porosity and tortuosity cathodes as well as densely-sintered reference samples.  Success is measured by the 

area capacity (mAh/cm2) that is realized at defined C-rates or current densities.   

Project Impact.  The high cost ($/kWh) and low energy density of current automotive lithium-ion technology 

is in part due to the need for thin electrodes and associated high inactive materials content.  If successful, this 

project will enable use of electrodes based on known families of cathode and anode actives but with at least 

three times the areal capacity (mAh/cm2) of current technology while satisfying the duty cycles of vehicle 

applications.  This will be accomplished via new electrode architectures fabricated by scalable methods with 

higher active materials density and reduced inactive content; this will in turn enable higher energy density and 

lower-cost EV cells and packs. 

Approach.  Two techniques are used to fabricate thick, high density electrodes with low tortuosity porosity 

oriented normal to the electrode plane:  (1) directional freezing of aqueous suspensions; and (2) magnetic 

alignment.  Characterization includes measurement of single-phase material electronic and ionic transport 

using blocking and non-blocking electrodes with ac and dc techniques, electrokinetic measurements, and 

drive-cycle tests of electrodes using appropriate battery scaling factors for EVs. 

Out-Year Goals.  The out-year goals are as follows:   

ǐ Identify anodes and fabrication approaches that enable full cells in which both electrodes have high 

area capacity under EV operating conditions.  Anode approach will include identifying compounds 

amenable to same fabrication approach as cathode, or use of very high capacity anodes, such as 

stabilized lithium or Si-alloys that in conventional form can capacity-match the cathodes.   

ǐ Use data from best performing electrochemical couple in techno-economic modeling of EV cell and 

pack performance parameters. 

Collaborations. Within BMR, this project collaborates with Antoni P. Tomsia (LBNL) in fabrication of 

low-tortuosity, high-density electrodes by directional freeze-casting, and with Gao Liu (LBNL) in evaluating 

Si anodes.  Outside of BMR, the project collaborates with Randall Erb (Northeastern University) on magnetic 

alignment fabrication methods for low-tortuosity electrodes. 

Milestones 

1. Fabricate and test at least one anode compound in an electrode structure having at least a 10 mAh/cm
2
 

theoretical capacity. (12/31/14  Complete) 

2. Demonstrate at least 5 mAh/cm
2
 capacity per unit area at 1C continuous cycling rate for at least one 

candidate anode. (3/31/15  Complete) 

3. Downselect at least one anode composition for follow-on work.  Go/No-Go milestone:  Demonstrate an 

electrode with at least 7.5 mAh/cm
2
 that passes the USABC dynamic stress test (DST) with peak 

discharge C-rate of 2C. (6/30/15  Complete) 

4. Demonstrate an electrode with at least 10 mAh/cm
2
 that passes the USABC dynamic stress test (DST) 

with peak discharge C-rate of 2C. (9/30/15  Complete) 

Task 1.3 ï Design and Scalable Assembly of High-Density, Low-Tortuosity Electrodes  

(Yet- Ming Chiang, Massachusetts Institute of Technology) 
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Figure 8.  DST test protocol (top) and comparison of 
discharge capacity for homogeneous and aligned 
porosity electrodes of same density and thickness. 

Progress Report 

 

Go/No-Go Milestone.  Demonstrate an electrode with at least 7.5 mAh/cm2 that passes the USABC dynamic 

stress test (DST) with peak discharge C-rate of 2C. (6/30/15). 

This quarter, a new magnetic-alignment 

approach to fabricating low-tortuosity, 

high-density electrodes is reported, with results 

that meet the Go/No-Go Milestone for this 

year.  As schematized in Figure 7, a LiCoO2 

particle suspension was prepared and mixed 

with short nylon rods that were magnetized by 

coating with iron oxide nanoparticles.  The 

suspension was placed in a dc magnetic field 

and the rods aligned upon application of the 

field for a short period of time (<1 min).  The 

electrode was then pyrolyzed in air to remove 

the nylon rods, then sintered to ca. 60% of 

theoretical density.   

The sintered samples with aligned 

low-tortuosity porosity were then sectioned 

into electrodes of 200 to 220 mm thickness 

and tested in Li half-cells using the DST 

protocol.  This test protocol applies charge and discharge pulses 

of defined C-rate and duration, as shown in Figure 8 (top).  The 

highest C-rate pulse discharge is 2C for 30 sec.  To test the 

effectiveness of the electrode fabrication technique, a control 

sample consisting of sintered LiCoO2 with homogenous porosity 

and similar sintered density and thickness was prepared for 

testing via the same DST protocol.  As shown in Figure 8 

(bottom), the DST protocol was run repeatedly on each electrode, 

beginning with a fully charged cell, until a lower cut-off voltage 

of 3.0 V was reached during pulse discharge.  As shown in 

Figure 8, the sample with aligned pore channels exhibits more 

than twice the discharge capacity of the sample with 

homogeneously distributed pores, and reaches an area capacity of 

8.1 mAh/cm
2
.  This performance meets the Go/No-Go Milestone 

of 7.5 mAh/cm
2
 under DST testing. 

Based on these promising test results, it is proposed that 

subsequent milestones also be modified to emphasize drive-

cycle testing that more meaningfully reflects real-world EV 

performance requirements.  It is proposed that the fourth quarter 

Go/No-go Milestone be modified to:  ñDemonstrate an electrode with at least 10 mAh/cm
2
 that passes the 

USABC dynamic stress test (DST) with peak discharge C-rate of 2C.ò  

Figure 7.  Scheme for magnetic alignment of removable pore former 
followed by pyrolysis and sintering.  Lower right image shows end-on 
view of aligned pores. 
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Project Objective.  This proposed work aims to enable Si as a high-capacity and long cycle-life material for 

negative electrode to address two of the barriers of Li-ion chemistry for EV/PHEV application: insufficient 

energy density and poor cycle life performance. The proposed work will combine material synthesis and 

composite particle formation with electrode design and engineering to develop high-capacity, long-life, and 

low-cost hierarchical Si-based electrode. State of the art Li-ion negative electrodes employ graphitic active 

materials with theoretical capacities of 372 mAh/g. Silicon, a naturally abundant material, possesses the 

highest capacity of all Li-ion anode materials. It has a theoretical capacity of 4200 mAh/g for full lithiation to 

the Li22Si5 phase. However, Si volume change disrupts the integrity of electrode and induces excessive side 

reactions, leading to fast capacity fade. 

Project Impact.  This work addresses the adverse effects of Si volume change and minimizes the side 

reactions to significantly improve capacity and lifetime to develop negative electrode with Li-ion storage 

capacity over 2000 mAh/g (electrode level capacity) and significantly improve the Coulombic efficiency to 

over 99.9%. The research and development activity will provide an in-depth understanding of the challenges 

associated with assembling large volume change materials into electrodes and will develop a practical 

hierarchical assembly approach to enable Si materials as negative electrodes in Li-ion batteries. 

Out-Year Goals.  There are three aspects of this proposed work: bulk assembly, surface stabilization, and 

Li  enrichment; these are formulated into 10 tasks in a four-year period.  

ǐ Develop hierarchical electrode structure to maintain electrode mechanical stability and electrical 

conductivity. (bulk assembly) 

ǐ Form in situ compliant coating on Si and electrode surface to minimize Si surface reaction (surface 

stabilization) 

ǐ Use prelithiation to compensate first cycle loss of the Si electrode. (Li enrichment)  

The goal is to achieve a Si-based electrode at higher mass loading of Si that can be extensively cycled with 

minimum capacity loss at high Coulombic efficiency to qualify for vehicle application. 

Collaborations. This project collaborates with the following: Vince Battaglia and Venkat Srinivasan of 

LBNL; Xingcheng Xiao of GM; Jason Zhang and Chongmin Wang of PNNL; Yi Cui of Stanford; and the Si-

Anode Focus Group. 

Milestones 

1. Design and synthesize three more PEFM polymers with different ethylene oxide (EO) content to study the 

adhesion and swelling properties of binder to the Si electrode performance. (Complete) 

2. Go/No-Go: Down select Si vs. Si alloy particles and particle sizes (nano vs. micro.)  Criteria: Down select 

based on cycling results. (Complete) 

3. Prepare one type of Si/conductive polymer composite particles and test its electrochemical performance.  

(June  On schedule) 

4. Design and synthesize one type of vinylene carbonate (VC) derivative that is targeted to protect Si surface 

and test it with Si-based electrode. (September  On schedule) 

Task 1.4 ï Hierarchical Assembly of Inorganic/Organic Hybrid Si Negative Electrodes  

(Gao Liu, Lawrence Berkeley National Laboratory) 
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Progress Report 

 

High-capacity and high-density, functional-conductive-polymer-binder/SiO electrodes were fabricated and 

calendered to various porosities. The effect of calendering on thickness, porosity, and density was 

investigated. The SiO particle size remained unchanged after calendering. When compressed to an appropriate 

density, an improved cycling performance was shown compared to the uncalendered electrode and over-

calendered electrode. The calendered electrode has a high Si density of ca. 1.2 g/cm
3
. A high-loading 

electrode with an areal capacity of ca. 3.5 mAh/cm
2
 at a C/10 rate is achieved using functional-conductive-

polymer-binder and a simple calendering method. 

 

Figure 9. (a) Chemical structure of PFM conductive polymer binder. (b) Particle size analysis via light scattering for the SiO pristine 
particles; embedded is the SEM image of the particles with a scale bar of 1 µm. (c) Cycling performance of the SiO/PFM electrode after 
being calendered into different porosities. (d) Rate performance. 

 

Figure 9 (a and b) shows the chemical structure of the PFM conductive-polymer-binder and the morphology 

of the SiO anode, respectively, used in this work. A 47% porosity was determined to deliver the best cell 

cycling performance (Figure 9c) among the four options and had a high Coulombic efficiency. Electrodes 

with 51% porosity may still have too much porosity; the charge transport path is not improved to an ideal 

case, although the performance is indeed improved compared to the uncalendered electrode. The electrodes 

with 43% porosity, on the other hand, are over compressed. The improved electrochemical performance is 

also evident in the rate performance shown in Figure 9d. This high-loading electrode with high density is 

enabled by the dual strategy of utilizing conductive-polymer-binder and optimized calendering. 
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Patents/Publications/Presentations 

1. Ai, Guo, and Yiling Dai, Yifan Ye, Wenfeng Mao, Zhihui Wang, Hui Zhao, Yulin Chen, Junfa Zhu, 

Yanbao Fu, Vincent Battaglia, Jinghua Guo, Venkat Srinivasan, and Gao Liu. ñInvestigation of Surface 

Effects Through the Application of Functional Binders in Lithium Sulfur Batteries.ò Nano Energy 16 

(2015): 28-37. 

2. Ling, Min, and Jingxia Qiu, Sheng Li, Cheng Yan, Milton Kiefei, Gao Liu, and Shanqing Zhang. ñMulti -

functional SA-PProDOT Binder for Lithium Ion Batteries.ò Nano Letters 15, no. 7 (2015): 4440-4447. 

3. Qiao, Ruimin, and Kehua Dai (co-first  author), Jing Mao, Tsu-Chien Weng, Dimosthenis Sokaras, 

Dennis Nordlund, Xiangyun Song, Vince Battaglia, Zahid Hussain, Gao Liu, and Wanli Yang. 

ñRevealing and Suppressing Surface Mn(II) Formation of Na0.44MnO2 Electrodes for Na-ion Batteries.ò 

Nano Energy 16 (2015):186-195. 

4. Feng, Caihong, and Le Zhang, Menghuan Yang, Xiangyun Song, Hui Zhao, Zhe Jia, Kening Sun, and 

Gao Liu. ñOne Pot Synthesis of Copper Sulfide Nanowires/Reduced Graphene Oxide Nanocomposites 

with Elithium Storage Properties as Anode Materials for Lithium Ion Batteries.ò ACS Applied Materials 

& Interfaces (2015): Article ASAP. 

5. Presentations at Electrochemical Society 227
th
 Meeting, 2015 Spring, Chicago (May 24  28, 2015): 

ǐ ñToward a Better Understanding of the Surface Effect through the Design of Binders in Lithium Sulfur 

Batteryò; Guo Ai. 

ǐ ñToward Practical Application of Functional Conductive Polymer Binder for a High-Energy Lithium-

Ion Battery Designò; Hui Zhao. 

ǐ ñToward a Single-Ion Nanocomposite Electrolyte for Lithium Batteriesò; Hui Zhao. 

https://ecs.confex.com/ecs/227/webprogram/Paper47483.html
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Project Objective.  This project supports BMR principal investigators through the supply of electrode 

materials, laminates, and cells as defined by the BMR Focus Groups.  The emphasis of the 2015 effort will be 

on the High-Voltage Focus Group, the Si-Anode Focus Group, and a nascent Li/S effort.  The objectives are 

to screen sources of materials, define baseline chemistries, and benchmark performance of materials targeted 

to specific Focus Group topics.  This provides a common chemistry and performance metrics that other BMR 

institutions can use as a benchmark for their own efforts on the subject.  In addition, test configurations will 

be designed and built to identify and isolate problems associated with poor performance.  Also, Li/S cells will 

be designed and tested.   

Project Impact.  Identification of baseline chemistries and availability of baseline laminates will allow a 

group of BMR principal investigators to work as a team.  Such team work is considered crucial in the 

acceleration of the advancement of todayôs Li-ion and Li/S systems.   Since all of the focus groups are 

dedicated to some aspect of increased energy density, all of this work will have an impact on this area. 

Out-Year Goals.  This framework of a common chemistry will accelerate advancements in energy density 

and should lead to baseline systems with an increased energy density of at least 40%.  It should also provide a 

recipe for making electrodes of experimental materials that are of high enough performance to allow for 

critical down selectðan important part of the process in advancing any technology. 

Collaborations.  This project collaborates with many BMR principal investigators. 

Milestones 

 

1. Identify and report the source of additional impedance of a symmetric cell. (12/31/14 ï Complete)  

2. Measure and report the gas composition of a symmetric cathode/cathode cell and an anode/anode cell. 

(3/31/15  Complete) 

3. Identify the first iteration of the baseline Li/S cell. (6/30/15  Ongoing) 

4. Measure and report gas volume versus rate of side reaction at several upper voltage cut-off points. 

(9/30/15  Ongoing) 

Task 1.5 ï Studies in Advanced Electrode Fabrication  

(Vincent Battaglia, Lawrence Berkeley National Laboratory) 
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Milestone 3. Identify the first iteration of the baseline Li/S cell. 

Work in the area of Li/S cell is gaining less importance as investigations into electrolytes with high 

solubilities of polysulfides have made little progress.  To increase energy density, the DOE is more focused 

on finding Li-ion cathodes with higher capacities for Li-ions at higher voltages and cell constructions that 

result in lower fractions of inactive components.   Before moving in this direction, it was important to 

establish good cycleability in pouch cells for the purpose of testing full cells.  (It was recently discovered that 

full cells assembled in coin-cell hardware do not cycle as well as those in pouch cells.  A mechanism for the 

short coming is under investigation.) 

Full pouch-cells were made with excess anode capacity of 2.8% and 27% to see if this greatly affects the 

cycleability of the cells.  In these cells, the anode has 9% more superficial area than the cathodes.  Cells with 

excess anode capacity are expected to have less total cell capacity because the side reaction on the anode will 

require lithium from the cathode, which leads to premature discharge of the anode compared to that expected 

from a perfectly balanced cell.  (Cells with too little anode capacity risk lithium deposition near the top of 

charge.) 

Figure 10 shows the cycling performance of the full cell with just 2.8% more anode capacity than cathode 

capacity.  The cell was cycled between 2.8 and 4.2 V at a C/2 charge and C/1 discharge rate and has reached 

700 cycles with a small amount of capacity fade. Figure 11 shows the average voltage of the charge and of the 

discharge during each cycle.   

  

Figure 10. Capacity versus cycle number for a Graphite/NCM 
cell cycled between 2.8 and 4.2 V at different rates. 

Figure 11. Average voltage on charge and discharge plotted 
versus cycle number. 

The difference between the two is a measure of the average resistance of the cell.  One sees that this resistance 

has increased less than 10% from cycle 100 to cycle 600. The capacity fade appears to accelerate after the 

first 600 cycles even though the difference in average voltage appears to be leveling off.  This could still be an 

effect of resistance rise, if the resistance rise at the top of charge or end of discharge is accelerating faster than 

the average. 
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Task 2 ð Silicone Anode Research 
Summary and Highlights 

Most Li-ion batteries used in the state-of-the-art electric vehicles (EVs) contain graphite as their anode material.   

Limited capacity of graphite (LiC6, 372 mAh/g) is one of the barriers that prevent the long range operation of 

EVs required by the EV Everywhere Grand Challenge proposed by the DOE/EERE.  In this regard, Silicon (Si) 

is one of the most promising candidate as an alternative anode for Li-ion battery applications.  Si is 

environmentally benign and ubiquitous.  The theoretical specific capacity of silicon is 4212 mAh/g (Li21Si5), 

which is 10 times greater than the specific capacity of graphite.  However, the high specific capacity of silicon is 

associated with large volume changes (more than 300 percent) when alloyed with lithium.  These extreme 

volume changes can cause severe cracking and disintegration of the electrode and can lead to significant 

capacity loss.   

Significant scientific research has been conducted to circumvent the deterioration of silicon-based anode 

materials during cycling.  Various strategies, such as reduction of particle size, generation of active/inactive 

composites, fabrication of silicon-based thin films, use of alternative binders, and the synthesis of one-

dimensional silicon nanostructures have been implemented by a number of research groups.  Fundamental 

mechanistic research also has been performed to better understand the electrochemical lithiation and delithiation 

processes during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction 

kinetics.  Although significant progress has been made on developing silicon-based anodes, many obstacles still 

prevent their practical application.  Long-term cycling stability remains the foremost challenge for Si based 

anode, especially for the high loading electrode (> 3mAh/cm2) required for many practical applications.   The 

cyclability of full cells using silicon-based anodes is also complicated by multiple factors, such as diffusion-

induced stress and fracture,  loss of electrical contact among silicon particles and between silicon and current 

collector, and the breakdown of SEI layers during volume expansion/contraction processes.  The design and 

engineering of a full cell with a silicon-based anode still needs to be optimized.  Critical research remaining in 

this area includes, but is not limited to, the following:  

ǐ The effects of SEI formation and stability on the cyclability of silicon-based anodes need to be further 

investigated.  Electrolytes and additives that can produce a stable SEI layer need to be developed.   

ǐ Low cost manufacturing processes have to be found to produce nano-structured silicon with the 

desired properties.  

ǐ A better binder and a conductive matrix need to be developed.  They should provide flexible but stable 

electrical contacts among silicon particles and between particles and the current collector under 

repeated volume changes during charge/ discharge processes. 

ǐ The performances of full cells using silicon-based anode need to be investigated and optimized. 

The main goal of the Battery Materials Research Task 2 is to gain a fundamental understanding on the failure 

mechanism of Si based anode and improve its long term stability, especially for thick electrode operated at full 

cell conditions.  The Stanford group will address the problem of large first cycle loss in Si-based anode by novel 

prelithiation approaches.  Two approaches will be investigated in this study: (1) developing facile and practical 

methods to increase first-cycle Coulombic efficiency of Si anodes, and (2) synthesizing fully lithiated Si to pair 

with high capacity lithium-free cathode materials. The PNNL/UP/FSU team will explore new electrode 

structures using nano Si and SiOx to enable high-capacity and low-cost Si-based anodes with good cycle 

stability and rate capability. Nanocomposites of silicon lithium oxide will be prepared by novel in situ chemical 

reduction methods to reduce the first cycle loss. Mechanical and electrochemical stability of the SEI layer 

formed on the surface of Si particles will be investigated by electrochemical evaluation and in situ/ex situ 

microscopic analysis. Success of this project will accelerate large-scale application of Si based anode and 

improve the energy density of Li-ion batteries to meet the goal of EV Everywhere. 
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Project Objective.  The objective of this project is to develop high-capacity and low-cost Si-based anodes 

with good cycle stability and rate capability to replace graphite in Li-ion batteries.  Nanocomposites of silicon 

and Li-ion conducting lithium oxide will be prepared by novel in situ chemical reduction methods to solve the 

problems associated with large first cycle irreversible capacity loss, while achieving acceptable Coulombic 

efficiencies. Large irreversible capacity loss in the first cycle will also be minimized by pre-doping Li into the 

anode using stabilized lithium metal powder or additional sacrificial Li electrode. The optimized materials 

will be used as the baseline for both thick electrode fabrication and studies to advance our fundamental 

understanding of the degradation mechanism of Si-based anodes. The electrode structures will be modified to 

enable high utilization of thick electrode. Mechanical and electrochemical stability of the SEI layer will be 

investigated by electrochemical method, simulation and in situ microscopic analysis to guide their further 

improvement. 

Project Impact.  Si-based anodes have much larger specific capacities compared with conventional graphite 

anodes.  However, the cyclability of Si-based anodes is limited because of the large volume expansion 

characteristic of these anodes.  This work will develop a low-cost approach to extend the cycle life of high-

capacity, Si-based anodes.  The success of this work will further increase the energy density of Li-ion 

batteries and accelerate market acceptance of electrical vehicles (EV), especially for the plug-in hybrid 

electrical vehicles (PHEV) required by the EV Everywhere Grand Challenge proposed by the DOE/EERE.  

Out-Year Goals.  The main goal of the proposed work is to enable Li-ion batteries with a specific energy of  

>200 Wh/kg (in cell level for PHEVs), 5000 deep-discharge cycles, 15-year calendar life, improved abuse 

tolerance, and less than 20% capacity fade over a 10-year period. 

Collaborations.  We will continue to collaborate with the following battery groups on anode development: 

ǐ Dr. Karim Zaghib, Hydro Quebec; preparation of nano-Si 

ǐ Prof. Michael Sailor, UCSD; preparation of porous Si 

ǐ Prof. David Ji, Oregon State University; preparation of porous Si by thermite reactions  

 

Milestones 

1. Identify the stability window of SEI formed on Si-based anode. (12/31/2014 ï Complete) 

2. Optimize the synthesis conditions of the rigid-skeleton supported Si composite. (3/31/2015 ï Complete) 

3. Demonstrate the operation of full cell using Si anode and selected cathode with >80% capacity retention 

over 100 cycles. (6/30/2015 ï Complete) 

4. Achieve >80% capacity retention over 200 cycles of thick electrodes (~3 mAh/cm2) through optimization 

of the Si electrode structure and binder. (9/30/2015 ï Ongoing) 

Task 2.1 ï Development of Silicon-Based High Capacity Anodes  

(Ji-Guang Zhang/Jun Liu, PNNL; Prashant Kumta, Univ. of Pittsburgh; Jim Zheng, PSU) 



Task 2.1 ï Zhang/Liu, PNNL; Kumta, Univ. Pitts.; Zheng, PSU  

BMR Quarterly Report 17 FY2015  Q3 

 

Progress Report 
 

Porous Si made by electrochemical etching was matched with 

NCA cathode for full cell demonstration. The NCA-Si full cell 

was tested between 2 and 4.3V at the current density of ~0.375 

mA/cm
2
. The porous Si electrode was pre-lithiated before full cell 

assembly. The areal capacity of the full cell is ~1.8 mAh/cm
2
, and 

the capacity retention is ~80% after 100 cycles (Figure 12). In 

another effort, a new type of ternary core-shell structured 

graphite/nano-Si/hard carbon composite (SGC) has been 

developed. Nano-Si and graphite were dispersed into 1.5M 

carbonhydrate solution and hydrothermally treated after stirring 

for 1h. It is a low cost, scalable, one-step synthesis. The ratio of 

graphite, nano-Si, and hard carbon from polymer carbonization 

can be well controlled. Figure 13 shows the 

schematic view (a), SEM image (b) and TEM 

(c) image of the SGC composite. At a high 

loading of 2.5 mAh/cm
2
, the optimized sample 

exhibits a specific capacity of ~800 mAh/g 

based on active materials weight at 0.2C rate 

with minimal capacity loss in 60 cycles.   

In another effort, a nanocomposite comprised of 

amorphous and/or nc-Si and a light weight 

intermetallic matrix exhibiting excellent 

mechanical properies has been generated by a 

single-step mechanochemical reduction of a Si-containing alloy. 

The nanocomposite comprised of Si and the HEMM-derived, 

mechanically compliant, electrochemically inactive matrix 

obtained after milling for 20h shows a reversible capacity of 

~800 mAh/g, validating the efficacy of the simple approach 

(Figure 14). The observed reversible capacity, albeit lower than the 

expected theoretical capacity (~1300 mAh/g), is primarily due to 

the incomplete reduction of the Si alloy. Further experiments 

continue for inducing complete reduction of the Si-containing alloy 

with a suitable reducing agent that will likely exhibit higher 

specific capacity. Results of these studies will be presented in the 

next report. 

The relationship between the SLMP to SiNPs-CNTs anode ratio and 

the first cycle Coulombic efficiency was systematically investigated 

as shown in Figure 15.  At a SLMP and anode mass ratio of around 

0.25, the charge capacity equals to the discharge capacity, or the 

Coulombic efficiency closes to 100%. At low SLMP loadings, the 

discharge capacity was greater than the charge capacity, which 

means that anode would consume Li from the cathode when a Li-

ion battery was fully charged; at high SLMP loadings, the discharge 

capacity was less than the charge capacity, which means that anode 

would not be able to be fully discharged. The pre-lithiation method 

has been used to prepare a symmetrical button cell super-capacitor 

using hierarchical porous carbon (HPC) with a specific capacitance 

of 107 F/g. 
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Figure 15. The first cycle discharge and 
charge capacities of SLMP-pre-lithiated 
cells as a function of SLMP to SiNPs-
CNTs anode mass ratio. 

 

Figure 12. A full-cell of NCA cathode and 
porous Si anode with the areal capacity of 
~1.8 mAh/cm2. 

Figure 14. Specific charge/discharge 
capacity vs cycles of nc-Si/inactive 
matrix in Li/Li+ system. 

 

Figure 13. Schematic view (a), SEM image (b), and TEM image 
(c) of graphite/nano-Si/carbon composite. 
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Patents/Publications/Presentations 

1. Presentation at MRS Spring 2015, San Francisco (April 8, 2015): ñHigh Loading Si Anode for Practical 

Li -Ion Batteriesò; Xiaolin Li, Sookyung Jeong, Yulin Chen, Pengfei Yan, Chongmin Wang, Xiulei Ji, 

Wei Luo,
 
Chunlong Chen,

 
Jun Liu,

 
and Ji-Guang Zhang.  

2. Presentation at the Symposium on Energy Storage Beyond Li-ion VIII, Oak Ridge, TN (June 3, 2015): 

ñHierarchically Porous Materials for Energy Storage Applicationsò; Luis Estevez, Genggeng Qi, 

Konstantinos Spyrou, Sookyung Jeong, Mark H. Engelhard, Xiaolin Li, Wu Xu, Emmanuel P. Giannelis, 

and Ji-Guang Zhang.  
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Project Objective. Prelithiation of high capacity electrode materials such as Si is an important means to 

enable those materials in high-energy batteries. This study pursues two main directions: (1) developing facile 

and practical methods to increase first-cycle Coulombic efficiency of Si anodes, and (2) synthesizing fully 

li thiated Si to pair with high capacity lithium-free cathode materials. 

Project Impact. The first-cycle Coulombic efficiency of anode materials will be increased dramatically via 

prelithiation. Prelithiation of high capacity electrode materials will enable those materials in next-generation 

high-energy-density lithium ion batteries. This projectôs success will make high-energy-density lithium ion 

batteries for electric vehicles. 

Out-Year Goals. Compounds containing a large quantity of Li will be synthesized for pre-storing Li ions 

inside batteries. First-cycle Coulombic efficiency (1
st
 CE) will be improved and optimized (over 95%) by 

prelithiating anode materials with the synthesized Li-rich compounds. 

Collaborations. The Project works with the following collaborators: (1) BMR program principal 

investigators, (2) SLAC: in situ x-ray, Dr. Michael Toney, and (3) Stanford: mechanics, Prof. Nix. 

Milestones 

1. Prelithiate anode materials by direct contact of Li metal foil to anodes. (January ï Complete) 

2. Synthesize LixSi nanoparticles with high capacity (>1000mAh/g Si). (July ï Complete) 

3. Prelithiate anode materials with dry-air-stable LixSi-Li 2O core-shell nanoparticles. (April  ï Complete) 

4. Synthesize artificial-SEI protected Li xSi NPs. (July ï Complete) 

 

Task 2.2 ï Pre-Lithiation of Silicon Anode for High Energy Li Ion Batteries  

(Yi Cui, Stanford University) 
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Usually, Li xSi nanoparticles (NPs) maintain their 

capacity in air with low humidity only for relatively 

short durations, which could limit its potential use in 

large-scale applications. Therefore, nanoscale 

prelithiation reagents with higher capacity and 

improved stability should be explored. Here we develop 

a facile reaction process utilizing the highly reactive 

nature of LixSi NPs to reduce 1-fluorodecane, thereby 

producing a continuous and dense coating over the 

NPs (Figure 16a). The synthesis is inspired by the 

SEI formation process in regular battery anodes. The 

TEM image (Figure 16b) shows that the surface of 

synthesized LixSi NPs is clean. After modified by 

1-fluorodecane in solution, each LixSi NP is wrapped in 

a uniform ~13 nm thickness coating ,as shown in 

Figure 16c. 

Compositional analysis of the synthesized core-shell 

NPs was acquired by XRD, XPS, and Raman 

spectroscopy. All peaks in the XRD pattern (Figure 17a) 

are indexed as Li21Si5 (PDF# 00-018-747), indicating a 

crystalline LixSi core and an amorphous coating layer. 

XPS analysis (Figure 17b) confirms the chemical 

composition of the coating layer with the 

presence of F, O, C and Li. As shown in the 

inset of Figure 17b, the F 1s spectrum 

contains a single peak at 684.9 eV, 

supporting the presence of LiF. Besides the 

strong hydrocarbon peak, the XPS 

of C shows two main peaks at 289.8 eV and 

286.4 eV, corresponding to two types of C as 

in O(C=O)O- and C-O-, respectively 

(Figure 17c). The peak assignments were 

further supported by Raman spectroscopy 

(Figure 17d). The Raman spectrum reveals a 

strong peak at 1762 cm
-1
, which corresponds 

to the C=O stretching vibration mode, with a 

similar peak position to that of Li2CO3. 

Compositional analysis demonstrates the 

conformal coating consists of LiF and 

Li  alkyl carbonate with long hydrophobic 

carbon chains, which effectively suppresses 

the reactivity of LixSi NPs under ambient 

conditions. 

 

 

 

. 

Figure 16. (a) Schematic diagram of the artificial-SEI 
coating formed by reducing 1-fluorodecane on the surface 
of LixSi NPs in cyclohexane. TEM images of LixSi NPs (b) 
before and (c) after coating. 

Figure 17. (a) XRD pattern of artificial-SEI coated LixSi NPs sealed in 
Kapton tape. (b) XPS of artificial-SEI coated LixSi NPs. Corresponding 
high-resolution XPS spectrum around F 1s peak region is shown in the 
inset. (c) High-resolution XPS spectra of C 1s. (d) Raman spectrum 

reveals the peak near 1762 cm-1 as the stretching vibration mode of C=O. 






















































































































































































































































