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BMR Manager’s Message

February 18, 2015

A MESSAGE FROM THE ADVANCED BATTERY MATERIALS RESEARCH MANAGER

1* Quarterly Report for FY2015

After a long and productive history, the Batteries for Advanced Transportation Technologies (BATT)
program has ended. Its promising research topics have transitioned into the newly devised Advanced
Battery Materials Research (BMR) Program at the Vehicle Technologies Office (VTO) of the DOE
Office of Energy Efficiency and Renewable Energy. The new name better reflects its materials focus and
further differentiates it from other VTO battery programs. BMR will continue to address the fundamental
issues of materials and electrochemical interactions associated with lithium ion and beyond-lithium
battery technologies. Quarterly reports and the Annual Merit Review Meeting will remain the major
avenues for disseminating information to the battery and automotive community.

The BMR program is divided into ten topic areas, namely cell
analysis, silicon anodes, advanced cathodes, liquid electrolytes,
diagnostics, electrode modeling, metallic lithium and solid
electrolytes, lithium sulfur batteries, lithium air batteries, and
sodium ion batteries. Advancements made in any of the BMR
topic areas will follow an analogous path to the vehicle market.
Once promising materials are identified, the corresponding
technology will be nurtured and evaluated at the cell level under
the Applied Battery Research Program. If successful, it will then
be handed over to our Advanced Battery Development Program for
evaluation as prototype cells and modules to ensure that it meets
the industry’s targeted energy density, cost and cycle life goals
(listed in the adjacent table).

I would like to take this opportunity to welcome the following
principal investigators who recently joined the program.

e Professor Perla Balbuena, Texas A&M University

e Professor Prashant Kumta, University of Pittsburgh

e Professor Jeff Sakamoto, University of Michigan

e Professor Eric Wachsman, University of Maryland

e Professor Stanley Whittingham, Binghamton University
e Dr. Nancy Dudney, Oakridge National Laboratory

e Dr. Hong Gan, Brookhaven National Laboratory

e Dr. Vincent Giordani, Liox

BMR Quarterly Report 1

Energy Storage

Cell Level
Performance T
Requirements argets
Specific Energy | 400 Whikg
Energy Density 600 WhiL
Calendar Life 10 Year
Cycle Lite @
30% DOD 1000 Cycles
Recharge Rate 1.4 KW
Regeneration
Pulse Power 300 Wikg
Discharge Pulse 700 Wikg
Power
Discharge Pulse
Power Density 1500 wil
Temperature 235 t0 +52 C
Range

Table 1: Summary of PEV
end of life cell level targets
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BMR Manager’s Message

I invite you to learn more about their studies as well as the progress and achievements of other BMR
investigators by going through this quarterly report and its future issues.

Finally, this year our Annual Merit Review meeting will take place at the Crystal Gateway Marriott in
Crystal City, Virginia on June 9-11, 2015. It will showcase 35 oral presentations belonging to BMR.
This is a great venue to learn more about our program and to interact first-hand with our principal
investigators. Information regarding the meeting may be found at
http://www.annualmeritreview.energy.gov/ in the near future. Please register to attend this meeting.

Sincerely,
Tien Q. Duong

Manager, Advanced Battery Materials Research (BMR) Program
Energy Storage R&D

Office of Vehicle Technologies

Energy Efficiency and Renewable Energy

U.S. Department of Energy
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Task 1 - Advanced Electrode Architectures

TASK 1 - ADVANCED ELECTRODE ARCHITECTURES
Summary

Energy density is a critical characterization parameter for batteries for electric vehicles as there is only so
much room for the battery and the vehicle needs to travel over 200 miles. The DOE targets are 500 Wh/L
on a system basis and 750 Wh/L on a cell basis. Not only do the batteries have to have high energy
density, they need to do so and still deliver 1000 Wh/L for 30 seconds on the system level. To meet these
requirements not only entails finding new, high energy density electrochemical couples, but also highly
efficient electrode structures that minimize inactive material content, allow for expansion and contraction
from one to several thousands of cycles, and allow for full access to the active materials by the
electrolyte. In that vein, the DOE OVT supports five projects in the ABMR Program under Electrode
Architectures: 1) Electrode Fabrication and Materials Benchmarking, 2) Assembly of Battery Materials
and Electrodes, 3) Design and Scalable Assembly of High-density, Low-tortuosity Electrodes, 4)
Hierarchical Assembly of Inorganic/Organic Hybrid Si Negative Electrodes, and 5) Electrode Failure
Analysis.

One of the more promising active materials for higher energy-density Li-ion batteries is the use of Si as
the anode. It has a specific capacity of over 3500 mAh/g and an average voltage during delithiation of 0.4
V vs. the Li/Li" electrode. This material suffers from two major problems both associated with the 300%
volume change the material experiences as it goes from a fully delithiated state to a fully lithiated one: 1)
the volume change results in a change in exposed surface area to electrolyte during cycling that consumes
electrolyte and results in a lithium imbalance between the two electrodes, and 2) the volume change
causes the particles to become electrically disconnected (which is further enhanced if particle fracturing
also occurs) during cycling. Some of the projects in this task are focused specifically on Si to make it a
more robust electrode by finding better binders.

Another approach to higher energy density is to make the electrodes thicker. The problem with thicker
electrodes is that the salt in the electrolyte has to travel a farther distance to meet the current needs of the
entire electrode throughout the discharge. If the salt cannot reach the back of the electrode at the
discharge rates required of batteries for automobiles, the battery is said to be running at its limiting
current. If the diffusional path through the electrode is tortuous or the volume for electrolyte is too low,
the limiting current is reduced. The other problem with thicker electrodes is that they tend to not cycle as
well as thinner electrodes and thus reach the end-of-life condition sooner, delivering fewer cycles. Two of
the projects in this task are focused on increasing the limiting current of thick electrodes while
maintaining cycleability through the fabrication of less tortuous electrodes or of electrodes with less
binder and more room for electrolyte.

If these projects are successful, they would result in a 25% increase in energy density as a result of
replacing graphite with Si, and another 20% increase in energy density by moving from 2 mAh/cm’
electrodes to 4 mAh/cm’ electrodes. This would result in a net increase of 50% in energy density of the
cell, and so a battery that once allowed a vehicle to travel only 200 miles could now travel 300 miles.

Highlights

Task 1. Exercised three baseline cell chemistries beyond 50 cycles at 4.3 V.

Task 2. Large cells (20 Ah and 60 Ah) constructed and cycled with nano-Si anodes.

Task 3. Fabricated highly oriented, low tortuosity electrodes capable of greater than 10 mA/cm” at C/5.
Task 4. Demonstrated the successful pre-lithiation of SiO in a SIO/NCM full cell.

Task 5. Demonstrated baseline cycleability of three cell chemistries at 4.1 V.
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Task 1.1 - Vincent Battaglia (LBNL)

Task 1.1 - Vincent Battaglia (Lawrence Berkeley National Laboratory)

Physical, Chemical, and Electrochemical Failure Analysis of Electrodes and Cells

PROJECT OBJECTIVE: This project investigates failure modes of targeted chemistries as defined by
the BATT Program and its Focus Groups. The emphasis of this effort for 2015 will be on the High-
Voltage and Si Anode Focus Groups. The objectives are to identify and quantify the chemical and
physical aspects of cell cycling and aging that lead to reduced electrochemical performance.
Specificially, research will focus on the effects on material stability as a result of increasing the cell
voltage of Graphite/NCM cells from 4.2 V to 4.7 V. In addition, differences in performance between
Graiphite/NCM and Si/NCM will be investigated. Specificially, investigations into the differences in cell
performance as a result of coulombic inefficiencies and the effects of increased electrode loadings on
cycleability will be carried out.

PROJECT IMPACT: Success with understanding and improving the stability of NCM in the presence
of electrolyte at voltages greater than 4.3 V vs. Li/Li+ will translate to an increase in capacity and voltage
and hence a compounding improvement in energy density by as much as 45%. Improvement in the
loading of anodes and cathodes from 2 to 5 mAh/cm?” could result in larger fractions of activematerials in
cells and a projected increase in energy density by an additional 20 %.

OUT-YEAR GOALS: Provide a prescription of the physical and structural properties required to
increase the accessible capacity of layered oxide materials. Demonstrate high loading cells with an
increased energy density of 20% with no change in chemistry or operating parameters.

COLLABORATIONS: Many ABMR PIs

Milestones

1. Measure and report the difference in capacity fade in mAh/h between LCO and HV-LCO at 4.3 V in
mAh/h. (12/31/14) Complete

2. ldentify and report the electrochemical phenomena that is responsible for the capacity fade of the
LCO and HV-LCO cells at 4.3 V. (3/31/15) Ongoing

3. Measure and report the phenomena responsible for the capacity fade of a 3 mAh/cm? cell in mAh/h
(6/30/15) Ongoing

4. Measure and report the self-discharge rate of the baseline Li/S cell in mA/(g of S) and decide if this is
an appropriate baseline design. (9/30/15) Ongoing
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Task 1.1 - Vincent Battaglia (LBNL)

Progress Report

Milestone 1. Measure and report the difference in capacity fade in mAh/h between LCO and HV-LCO at

4.3 V in mAh/h.

After establishing baseline performance at a cutoff voltage of 4.1 V for the LCO, high voltage LCO (HV
LCO), and NCM, (see the other quarterly report for this year), cells were made and cycled between 2.8
and 4.3 V against Li metal counter electrodes.
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Figure 1: Capacity Fade Curves for LCO, High Voltage LCO, and NCM

One can see that of the three cells, the LCO is showing the most capacity fade. For all of the cells, there
was a series of lower capacity cycles for around 10 cycles. These cycles occurred over the holiday break.
We were told that the cyclers and environmental chambers in which the cells were housed would remain
on back-up power during a retrofit of the power to the building. After a week of preparation for this event,
the facility managers decided to not put the environmental chambers on backup power without telling us.
The cells cycled but at lower temperatures than the 30°C that is typical. Fortunately, the cells recovered
their full cycling capacity once full power was restored to the building. Sources for the differences in the
cycleability between cells and between 4.1 and 4.3 V will be investigated in the next quarter.

Milestone 2. Identify and report the electrochemical phenomena that is responsible for the capacity fade
of the LCO and HV-LCO cells at 4.3 V.

Cells are presently being cycled; see Milestone 1. An indepth investigation of the differences in capacity
fade will take place in quarter 2.

Milestone 3. Measure and report the phenomena responsible for the capacity fade of a 3 mAh/cm® cell in
mAh/h. Not started.

Milestone 4. Measure and report the self-discharge rate of the baseline Li/S cell in mA/(g of S) and
decide if this is an appropriate baseline design. See reports under Milestones 1 and 2.
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Task 1.2 — Karim Zaghib (HydroQuebec)

Task 1.2 - Karim Zaghib (HydroQuebec)

Assembly of Battery Materials and Electrodes

PROJECT OBJECTIVE: To develop high-capacity, low-cost electrodes with good cycle stability and
rate capability to replace graphite in Li-ion batteries. In our recent study on the Si-based electrodes, the
effort was directed on the architecture to design electrodes by using low-cost materials. The study of the
electrode formulations showed that the mixing process, carbon/Si ratio and the binder type are factors
influencing the electrode structure. The in-situ analyses revealed that Si-nano particles mitigate the
volume changes, and thus protect the electrode from cracks and delamination. Furthermore, if the
threshold of the stress is controlled by optimizing the cycling protocols, the particles and the electrode
experience low stress.

PROJECT IMPACT: The aim of this project is to overcome the electrochemical capacity limitations
(both gravimetric and volumetric) of conventional carbon anodes. This is achieved by developing a low-
cost electrode that utilizes a high-capacity material such as silicon. Controlling the composition (i.e.,
loading of the active material, ratio of binder and carbon additive) of the electrode yielded a more tolerant
anode with acceptable volume change and acceptable cycle life with low capacity face. A high-energy Li-
ion cell will be produced using the optimized Si-based and LMNO electrodes.

OUT-YEAR GOALS: Complete the optimization of the electrode composition by varying the carbon
additive ratio and the carbon type. In addition to /n-Situ SEM analyses, In-Situ impedance spectroscopy
will be introduced to enhance the understanding of capacity fade of the Si-material. These analyses will
clarify the mechanism leading to the electrode failure mode and to guide further improvements and design
of the electrode architecture. Complete the optimization of the synthesis method of Si-nano powder
developed at HQ. As a final goal, the optimized Si-anode and LiMnNiO cathode will be coated in the
pilot line and then used to assemble laminate 20 Ah Li-ion cells using the new pilot stacking machine at
HQ.

COLLABORATIONS: LBNL (Gao Liu, Vince Battaglia, and Venkat Srinivasan), University of Texas
at Austin (John Goodenough) and BNL (Xiao-Qing Yang).

Milestones

1. Complete the optimization of the nano-Si-anode formulation. (12/31/14) Complete

2. Complete the optimization of the synthesis of the nano-size Si method developed at HQ.
Go/No-Go decision: Terminate the Si synthesis effort if the capacity is less than 1200 mAh/g
(3/31/15)

3. Produce and supply laminate films of Si-anode and LMNO-cathode (10 m) to BATT Pls. (6/30/15)
4. Produce and supply large format 20 Ah high-energy stacking cells (4) to BATT Pls. (9/30/15)
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Task 1.2 — Karim Zaghib (HydroQuebec)

Progress Report

Milestone 1. Complete the optimization of the nano-Si anode formulation. Based on the previous result
that the Si nanopowder showed good cycle life when SOC is cotrolled to <40% with a combination
algeante aqueous binder system, the formulation of nano-Si anode has been scaled up in the pilot-line to
verify the performance in a large-format cell. Figure 2(a) indicates the active zone of Si anode when it is
coupled with a high voltage LMNO spinel cathode. The cell showed a designed capacity of 20Ah, but
exposed two problems to be adressed; first, the energy density of the cell did not surpass that of
conventional batteries, and, second, severe gas evolution continued with cycling, which can not be
observed in coin-cell testing. The machanism behind the gas generation is under investigation.

55

Vottage (V)
N
o

0% 10%

(a)

|

= $i SOC 53% Charge
§i SOC 100% Charge

= LIINO SOC 100% Charge

()

20% 30% 40% 50% 60% 70%
Theoritical Capacity of Si anode (%)

80%

90% 100%

Voftage (V)

5.0

(b)

Average Voltage : 4.2 V

e GRADT e GRACZ e GRDE e GRACY e CRAD3 e GRACA

0 2 4 6 8 10 12 14 16 18 20
Capacity (Ah)

Figure 2: (a) Design of anode-to-cathode balance showing 40% utilization of Si capacity and (b) initial charge-discharge profiles of
20Ah large format cells based on a nano-Si anode and a high-voltage LMNO cathode.

The formulation of the anode electrode was modified to mitigate the volume expansion of Si particles and
retard the deformation of the electrode. Figure 3 demonstrates the enhanced utilization of the Si anode by
implementing a mixture of granular and fibrous graphite. The cells assembled using the develped
electrode showed a capacity of 60 Ah and an energy density of 250 Wh/g. The formulation of the anode
electrode will be further optimized based on the post-mortem analysis, which will occur with the
completion of the cycle life testing.
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Figure 3: (a) Design of anode-to-cathode balance showing 90% utilization of Si capacity and (b) initial charge-discharge profiles of
60Ah large format cells based on nano-Si anode and high energy NCM cathode.
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Task 1.3 - Yet-Ming Chiang (MIT)

Task 1.3 - Yet-Ming Chiang, Massachusetts Institute of Technology

Design and Scalable Assembly of High-Density, Low-Tortuosity Electrodes

PROJECT OBJECTIVE: To develop a scalable high density binder-free low-tortuosity electrode design
and fabrication process to enable increased cell-level energy density compared to conventional Li-ion
technology. Characterize and optimize the electronic and ionic transport properties of controlled porosity
and tortuosity electrodes as well as densely- sintered reference materials in Li(Ni,Co,Al)O,(NCA), high
capacity Li,MnOs-LiMO, and high voltage LiMMn,.Osand LiMMn,_,O4 F, spinels in order to elucidate
rate limiting steps. Success is measured by the area capacity (mAh/cm?) that is realized at defined C-rates
or current densities. Develop corresponding anodes and demonstrate full cells.

PROJECT IMPACT: The high cost ($/kWh) and low energy density of current automotive lithium-ion
technology is in part due to the need for thin electrodes and associated high inactive materials content. If
successful this project will enable use of electrodes based on known families of cathode and anode actives
but with at least 3 times the areal capacity (mAh/cm®) of current technology while satisfying the duty
cycles of vehicle applications. This will be accomplished via new electrode architectures fabricated by
scalable methods with higher active materials density and reduced inactive content, and will in turn
enable higher energy density and lower-cost EV cells and packs.

OUT-YEAR GOALS: Identify anodes and fabrication approaches that enable full cells in which both
electrodes have high area capacity under EV operating conditions. Anode approach will include
identifying compounds amenable to same fabrication approach as cathode, or use of very high capacity
anodes such as stabilized lithium or Si-alloys that in conventional form can capacity-match the cathodes.
Use data from best performing electrochemical couple in techno-economic modeling of EV cell and pack
performance parameters.

Milestones

1. Fabricate and test at least one anode compound in an electrode structure having at least 10 mAh/cm®
theoretical capacity. (12/31/14) Complete

2. Demonstrate at least 5 mAh/cm” capacity per unit area at 1C continuous cycling rate for at least one
candidate anode. (3/31/15) Complete

3. Downselect at least one anode composition for follow-on work. Go/No-Go milestone: Downselect
based on demonstrated area capacity of at least 7.5 mAh/cm2 at 1C continuous rate. (6/30/15)
Ongoing

4. Demonstrate an anode with at least 10 mAh/cm? capacity per unit area for a 2C 30 sec pulse.
(9/30/15) Ongoing
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Task 1.3 - Yet-Ming Chiang (MIT)

Progress Report

Milestone 1. Fabricate and test at least one anode compound in an electrode structure having at least 10
mAh/cm? theoretical capacity. (12/31/14)

Aqueous suspensions were prepared
using battery-grade graphite and
CMC binder (5 wt% relative to the
graphite) and containing no
conductive carbon additive. The
formulations prepared are similar to  [scmin §
suspensions for an aqueous
electrode coating process for Li-ion.
Directional freezing experiments
were conducted in a similar manner
to past experiments for cathodes

except that electrodes were not o . _
sintered after lyophilization. As Figure 4: Cross sections of graphite anodes formulated with CMC binder and freeze-

shown in Figure 4, highly-oriented,  cast at the cooling rates indicated. Electrodes were lyophilized to retain structure.
low-tortuosity pore-channels were ~ Total porosity is 58-60 vol%.

obtained at cooling rates of 5°C/min and 7.5°C/min. The final porosity of the electrodes was 58 to 60
vol%. When sectioned to 800 um thickness, the anodes have theoretical area capacity of about 25
mAh/cm®. When tested at a C/5 rate, stable cycling was observed over 10 cycles, as shown in Fig. 2 (left)
with area capacity of 15 mAh/cm?. _(CI5) Di§chargel capacilty

5 mAh/cm? capacity per unit area
at 1C continuous cycling rate for
at least one candidate anode. (3/31/15).

The directionally-freeze cast graphite Figure 5: Galvanostatic discharge voltage vs. capacity for 800 um thick electrode

electrodes in Figure 4 were tested at sectioned from sample directionally freeze-cast at 7.5°C/min. Left: Multiple cycles
C/10. C/5. and 1C rates at room at C/5 rate. Right: Comparison of result at C/10, C/5 and 1C discharge rate.

temperature in Li half-cells of Swagelok type. Results are shown in Figure 5 (right). At a 1C rate, the
area capacity is 6 mAh/cm’ meeting Milestone 2.
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Task 1.4 - Gao Liu (LBNL)

Task 1.4 - Gao Liu (Lawrence Berkeley National Laboratory)

Hierarchical Assembly of Inorganic/Organic Hybrid Si Negative Electrodes

PROJECT OBJECTIVE: This proposed work aims to enable Si as a high capacity and long cycle-life
material for negative electrode to address two of the barriers of lithium-ion chemistry for EV/PHEV
application, insufficient energy density and poor cycle life performance. The proposed work will combine
material synthesis and composite particle formation with electrode design and engineering to develop
high capacity, long life and low cost hierarchical Si based electrode. State of the art Li-ion negative
electrodes employ graphitic active materials with theoretical capacities of 372 mAh/g. Si, a naturally
abundant material, possesses the highest capacity of all Li-ion anode materials. It has a theoretical
capacity of 4200 mAh/g for full lithiation to the Li22Si5 phase. However, Si volume change disrupts the
integrity of electrode and induces excessive side reactions, leading to fast capacity fade.

PROJECT IMPACT: This work addresses the adverse effects of Si volume change and minimizes the
side reactions to significantly improve capacity and lifetime to develop negative electrode with Li-ion
storage capacity over 2000 mAh/g (electrode level capacity) and significantly improve the coulombic
efficiency. The research and development activity will provide an in-depth understanding of the
challenges associated with assembling large volume change materials into electrodes, and will develop a
practical hierarchical assembly approach to enable Si materials as negative electrodes in Li-ion batteries.

OUT-YEAR GOALS: There are three aspects of this proposed work — bulk assembly, surface
stabilization and lithium enrichment, which are formulated into 10 tasks in a four-year period.1) Develop
hierarchical electrode structure to maintain electrode mechanical stability and electrical conductivity.
(Bulk assembly) 2) Form in situ compliant coating on Si and electrode surface to minimize Si surface
reaction. (Surface stabilization) 3) Use prelithiation to compensate first cycle loss of the Si electrode. (Li
enrichment) In the end of the 4" year, the goal is to achieve a Si based electrode at higher mass loading of
Si, and can be extensively cycled cycles with minimum capacity loss at high coulombic efficiency to
qualified for vehicle application.

COLLABORATIONS: Vince Battaglia and Venkat Srinivasan (LBNL), Xingcheng Xiao (GM), Jason
Zhang (PNNL), Tong Wei, Wanli Yang, Chongming Wang (PNNL), and the Si-Anode Focus Group.

Milestones

1) Design and synthesis at least two functional conductive polymers for Si based electrode. (Dec. 31)
Complete

2) Develop methodologies to improve the Si electrode first cycle efficiency to 90%. (Mar. 31) Complete

3) Design and synthesize new surface stabilizing additive, and test it with Si based electrode. (Jun. 30)
Ongoing

4) Go/No-Go Apply hierarchical electrode design to achieve a 3 mAh/cm’ loading. (Sep. 31) Ongoing
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Task 1.4 - Gao Liu (LBNL)

Progress Report

Silicon monoxide (SiO) is considered a promising
alternative anode material for lithium-ion batteries
(LIBs), with a specific capacity of 1000 to1500
mAh/g, to the standard graphite anode (372 mAh/g).
One caveat for the application of SiO is its low 1%
cycle efficiency. During the 1* cycle lithiation process,
besides the reversible reaction with the Si phase,
lithium reacts with silicon dioxide to form silicate.
Only 65% of the lithium can reversibly delithiate: this
is a detriment to full cell applications. Thus, an
appropriate prelithiation step is critical.

Stabilized lithium metal powder (SLMP®) is used to
prelithiate the SiO anode in the SIO/NMC full cell.
SLMP is a micron-size lithium metal powder with ca.

a 2 wt% lithium carbonate surface coating. The

amount of SLMP added to a cell was calculated to
theoretically eliminate all the irreversible capacity in
the first cycle. A calendar machine was used in a glove
box to pressure-activate the SLMP particles (Figure
6a). This operation breaks the lithium carbonate (Li,CO3)
shell and allows lithium to be in direct electrical contact
with the SiO materials in the anode.

A 96-hour rest period was used to allow the crushed
SLMP to fully prelithiate the SiO anode before current-
driven charging of the cells. As a control, a second
SiO/NMC full cell without SLMP was allowed to rest for
96 hours before cycling. Both cells were put through a
formation process consisting of two cycles at C/20 and
two cycles at C/10 prior to C/3 cycling. Apparent
improvement was shown for the SLMP-loaded full cells.
The first cycle CE increased from 48% to ca. 90% with the
SLMP (shown in the inset of Figure 6d). SLMP enabled
the NMC/SiO full cell to maintain a reversible capacity of
ca. 110 mAh/g after more than 100 cycles at C/3.
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Figure 6: (a) Schematics of the utilization of SLMP for
the SiO electrode. SLMP particles are loaded on to the
Si0 anode. Rolling compression was used to crush the
Li2COs shell of SLMP to release lithium metal and
laminate it on the surface of SiO electrode. This process
is called SLMP activation. (b) SLMP particles loaded on
the SiO electrode before activation. The inset shows the
SEM image of a single SLMP particle. (c) The SiO
electrode surface after electrolytes are added onto the
SiO electrode with activated SLMP after 12 hours. This
shows the disappearance of SLMP and indicates the
successful prelithiation of the SiO electrode. (d)
SiO/NMC full cell performance with or without the SLMP
capacity-enhancement additive, two cycles at C/20, two
cycles at C/10, and then C/3. The first cycle voltage
curves of the two cells.
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Task 1.5 - Vincent Battaglia (LBNL)

Task 1.5 - Vincent Battaglia (Lawrence Berkeley National Laboratory)

Studies in Advanced Electrode Fabrication

PROJECT OBJECTIVE: This project supports ABMR PIs through the supply of electrode materials,
laminates, and cells as defined by the ABMR Focus Groups. The emphasis of the 2015 effort will be on
the High-Voltage Focus Group, the Si-Anode Focus Group, and a nascent Li/S effort. The objectives are
to screen sources of materials, define baseline chemistries, and benchmark performance of materials
targeted to specific Focus Group topics. This provides a common chemistry and performance metrics that
other ABMR institutions can use as a benchmark for their own efforts on the subject. In addition, test
configurations will be designed and built to identify and isolate problems associated with poor
performance. Also, Li/S cells will be designed and tested.

PROJECT IMPACT: Identification of baseline chemistries and availability of baseline laminates will
allow a group of ABMR PIs to work as a team. Such team work is considered crucial in the acceleration
of the advancement of today’s Li-ion and Li/S systems. Since all of the focus groups are dedicated on
some aspect of increased energy density, all of this work will have an impact on this area.

OUT-YEAR GOALS: This framework of a common chemistry will accelerate advancements in energy
density and should lead to baseline systems with an increased energy density of at least 40%. It should
also provide a recipe for making electrodes of experimental materials that are of high enough
performance to allow for critical down select — an important part of the process in advancing any
technology.

COLLABORATIONS: Many ABMR PIs

Milestones

1. Identify and report the source of additional impedance of a symmetric cell. (12/31/14) Complete

2. Measure and report the gas composition of a symmetric cathode/cathode cell and an anode/anode cell.
(3/31/15) Ongoing

3. Identify the first iteration of the baseline Li/S cell. (6/30/15) Ongoing

Measure and report gas volume versus rate of side reaction at several upper voltage cut-off points.
(9/30/15) Ongoing
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Task 1.5 - Vincent Battaglia (LBNL)

Progress Report

Milestone 1. Identify and report the source of additional impedance of a symmetric cell. This quarter was
spent developing baseline electrodes for the high voltage study. Electrodes were made of LCO, High-
Voltage LCO (HV LCO), and NCM, all from the same commercial supplier. The electrodes were cycled
against Li to test their cycleability. The approach is to start with conditions demonstrating excellent
cycleability and then to push the voltage up until the cycleability begins to suffer. To demonstrate
excellent cycleability, electrodes of modest loadings were formulated and cycled against Li metal under
mild conditions of 30°C and between 2.8 and 4.1 V. (See Figure 7.)
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Figure 7: Capacity Fade Curves for LCO, High Voltage LCO, and NCM

Unfortunately, the two LCO-based cells were initially cycled between 2.8 and 4.2 V for a few cycles
before it was noticed and then changed to 4.1 V. The cell with LCO shows a slight degree of capacity
fade at 4.1 V after cycling at 4.2 for 10 cycles so this experiment is being repeated. The cells with NCM
and HV LCO show almost no capacity fade for the first 150 and 80 cycles, respectively. With the
benchmarking nearly completed, the next step will be to start pushing up the voltage and investigating
modes of capacity fade. A three electrode cell will be involved in those investigations and the symmetric
cells of cathodes will be prepared and evaluated in the next quarter.

Milestone 2. Measure and report the gas composition of a symmetric cathode/cathode cell and an
anode/anode cell: A pouch cell was developed that consists of two valves. One valve will allow a
sweeping gas in and the other to allow the gas to leave.

Milestone 3. Identify the first iteration of the baseline Li/S cell: Cell hardware for testing Li/S cells was
identified and purchased. The cell is due to arrive early January. There are a handful of investigators at
LBNL developing technologies for this chemistry including Elton Cairns, Gao Liu, Venkat Srinivasan,
and Nitash Balsara. We intend to work closely with those investigators and incorporate their technologies
into the selected cell hardware.

Milestone 4. Measure and report gas volume versus rate of side reaction at several upper voltage cut-off
points: Ongoing

See reports under Milestones 1 and 2.
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Task 2 — Silicon Anode Research

TASK 2 - SILICON ANODE RESEARCH

Most Li-ion batteries used in the state of the art electric vehicles (EVs) contain graphite as their anode
material. Limited capacity of graphite (LiCq, 372 mAh/g) is one of the barriers that prevent long range
operation of EVs required by the EV Everywhere Grand Challenge proposed by DOE/EERE. In this
regards, Silicon (Si) is one of the most promising candidate as an alternative anode for Li-ion battery
applications. Si is environmentally benign and ubiquitous. The theoretical specific capacity of silicon is
4212 mAh/g (Liy;Sis), which is 10 times greater than the specific capacity of graphite. However, the high
specific capacity of silicon is associated with large volume changes (more than 300 percent) when alloyed
