Design and Synthesis of Advanced High-Energy Cathode Materials

PI: Guoying Chen, LBNL

Technical Approach:
- Synthesize single-crystal model systems and use them to gain fundamental understanding on kinetic barriers and instabilities in high-energy cathode materials.
- Perform advanced *ex situ* and *in situ* diagnostic studies at both single-crystal and electrode levels for insights on material’s optimization.

Status:
- Revealed that surface properties of pristine LMR-NMC particles differ from that of the bulk and they are facet dependent.
- Demonstrated the critical role of pristine surface on a range of side reactivities and overall stability of the LMR-NMC cathodes.

Objectives:
- Establish correlations between material’s physical properties and electrode performance/stability.
- Identify optimal bulk and surface properties for minimum side reactions and maximum Li transport.
- Develop designer materials for next-generation cathodes.

Deliverables:
- Identification of properties and processes that limit the performance of electrode materials.
- Synthesis of advanced cathode materials with improved energy density, rate capability, and safety.

Technology:
- A combination of model system construction and advanced diagnostic studies.
- Engineering of active particles, especially surface properties, for enhanced cathode performance and stability.

Milestones:
- Q1: Establish synthesis-structure-electrochemical property relationships in high-voltage Li-TM-oxides.
- Q2: Downselect alternative high-energy cathode materials for further investigation. Go/No-Go criteria: material delivers at least 200 mAh/g capacity in the voltage window of 2-4.5 V.
- Q3: Determine Li concentration and cycling dependent transition-metal movement in and out of oxide particles. Examine the mechanism.
- Q4: Identify key surface properties and features hindering stable cycling of Li-TM-oxides at high voltages.

Funding:
Duration: 4 yrs (Yr 4); FY16 Budget: $500K (DOE)