Analysis of Film Formation Chemistry on Silicon Anodes by Advanced In Situ and In Operando Vibrational Spectroscopy

PI: G.A. Somorjai (U.C. Berkeley)

Technical Approach:
- Determine formation/degradation mechanisms of the solid electrolyte interface (SEI) on the surfaces of Si anodes during charge/discharge cycles by applying advanced in situ vibrational spectroscopies.
- Determine how the properties of the SEI contribute to failure of Si anodes.
- Develop electrolyte additives and/or surface modification methods to improve Si anode capacity loss and cycling behavior.

Status:
- Modifying SFG apparatus for high-resolution spectra of Si particles and microstructures / electrolyte interface. Initiated
- Preforming SFG measurement under constant and dynamic potentials of 1 M LiPF₆ in EC w/o DEC in order to probe the SEI formed on amorphous silicon anodes. Initiated

Technology:
SFG revealed that linear alkyl carbonate formed Si-alkoxide bonds only in Si(100)-H terminated anode. In Si(100)-Oₓ only soluble products leading to anode failure were detected.

Objectives:
- Chemical composition and structure of the SEI at the Si/electrolyte interface:
 - which electrolyte components are involved
 - how lithium ion solvation is involved
- SEI inhomogeneity across Si electrode surface
- Stability of the SEI with respect to:
 - the crystal size, structure, and orientation of Si
 - doped or undoped Si
 - electrolyte composition

Deliverables: Understanding of the composition, structure, and formation/degradation mechanisms of the solid electrolyte interface (SEI) on the surface of Si anodes during charge/discharge cycles.

Funding:
Duration: 4 yrs (Yr 4)
FY16 Budget: $200K (DOE)

Milestones:
Q1: Modifying SFG apparatus in order to obtain high resolution spectra further allowing to research the electrolyte / Si interface.
Q2: Preforming SFG measurement under constant potentials (-0.01 V, 0.5 V and 1.0 V vs Li/Li⁺) of 1 M LiPF₆ in ethylene carbonate (EC) w/o diethyl carbonate (DEC) in order to probe the SEI formed on amorphous silicon.
Q3: Preforming ps-SFG measurements under dynamic potential of 1 M LiPF₆ in EC : DEC mixture. Go/No-Go: Can we distinguish between the various SEI products in the C-H stretch mode (2800 – 3200 cm⁻¹)? If not proceed to conventional C-O region (1700 – 1800 cm⁻¹)
Q4: Ring opening kinetics of EC in the presence of LiPF₆ and DEC by fs-SFG measurement in tandem with cyclicvoltammetry.