Novel Cathode Materials and Processing Methods

PI/Co-PI: Michael Thackeray /Jason Croy (ANL)

Technical Approach:
- Advance the performance and stability of high-capacity ‘layered-layered’ cathodes via integrated spinel components
- Explore spectrum of processing routes (0.01-1kg batches) to synthesize high-energy/power/life, layered-layered-spinel (LLS) electrodes

Status:
- Progress has been made in the development of composite, LLS electrodes that can deliver discharge capacities ≥200 mAh/g with high first cycle efficiencies (~90%)

Technology: Demonstration of ‘Layered-Layered-Spinel’ processing and high capacity LLS compositions (200 mAh/g)

Objectives:
- Development of low-cost, high-energy and high-power, Mn-oxide-based cathodes
- Improvement of design, composition and performance of advanced electrodes with stable architectures and surfaces
- Atomic-scale understanding of electrochemical and degradation processes enabling the rational design of new materials

Deliverables: Synthesis and electrochemical characterization of advanced, Mn-based, metal-oxide cathodes

Funding:
- Duration: 3 yrs (Yr 1)
- FY16 Budget: $500K

Milestones:
- **Q1:** Optimize the composition and cycling stability of structurally integrated materials with low Li$_2$MnO$_3$ contents
- **Q2:** Scale up promising materials to 10g-100g-1kg
- **Q3:** Identify unique surfaces and coatings
- **Q4:** Integrate milestones to deliver 200-230 mAh/g at greater than 3.5 V (~800 Wh/kg) on extended cycling

LLS by CSTR (tap ~2.3 g/cm3)

Li half-cell
- 4.6-2.5 V (1st cyc)
- 4.45-2.5 V (cyc 2-5)
- 15 mA/g (30$^\circ$C)

Oxalate synthesis
- Charge
- Discharge

5 Vehicle Technologies Program eere.doe.gov