Predicting Microstructure and Performance for Optimal Cell Fabrication

PI/Co-PI: D.R. Wheeler / B.A. Mazzeo (BYU)

Technical Approach:

- Construct a novel *n*-line surface probe that can sample local conductivity of intact battery electrodes.
- Construct a particle-dynamics model that can predict electrode microstructure and conductive pathways.
 Validate model with extensive experiments.

Status:

- Third-generation electronic probe completed and tested.
 Technology transfer with A123 completed. Transfer with Bosch R&T Center in progress.
- Computer model of coating and drying process matches a range of physical metrics, successfully passing Go/No-Go decision point (Q4-FY15).

Technology:

In addition to the probe technology, a physicsbased particle model (left) imitates the fabrication process to match experimental microstructure of a Li-ion battery cathode (right).

Objectives:

- Develop rapid and reliable tools for measuring and predicting electronic and ionic conductivities and 3D microstructure of particle-based electrodes.
- Understand tradeoffs and relationships between fabrication parameters and performance.

Deliverables: (1) Robust system for measuring local conductivities of electrodes (6-line probe shown below). (2) Particlebased computer

model for predicting electrode microstructure and performance.

Funding:

Duration: 4 yrs (Yr 4) FY16 Budget: \$229K (DOE)

Milestones:

- Q1: Demonstrate that the DPP model can accurately imitate the mechanical calendering process for a representative electrode film.
- Q2: Develop a robust numerical routine for interpreting N-line conductivity measurements.
- Q3: <u>Go/No-Go</u>: Continue work on N-line probe and inversion routine. <u>Criteria</u>: Demonstrate that the N-line probe and inversion routine can accurately determine anisotropic conductivity for test materials.
- Q4: Demonstrate correlations between DPP modeled conductivities and those determined by FIB/SEM and N-line probe.