High Conductivity and Flexible Hybrid Solid State Electrolyte

PI/Co-PI: Eric Wachsman (UMD) / Liangbing Hu (UMD)
/ Yifei Mo (UMD)

- Objectives:
- Develop flexible, high mechanical strength (~ 10 MPa) and thermally stable, hybrid solid state electrolytes.
- Achieve high room temperature ionic conductivity (≥0.5 mS/cm) and stable interface with Li metal that blocks dendrites at current densities up to 3 mA/cm².
- Demonstrate Li-S battery performance of 450 Wh/kg and 1000 Wh/L, for 500 cycles.
- Impact:

Success of this project will enable high-energy density, safe Li metal batteries with 2-3X energy density, that can be processed within the existing battery manufacturing infrastructure.

Accomplishments:

- Fabricated 4 cm by 4 cm garnet nanofiber membrane
- Synthesized polymer electrolyte coated garnet nanofiber hybrid electrolytes
- Modeled Li⁺ transport and developed understanding of Li⁺ diffusion in garnet nanofibers and its response to mechanical deformation.
- Achieved hybrid SSE with a high ionic conductivity (~0.5x10⁻³ S/cm), high electrochemical stability (~4.5V), and high mechanical property.

Hybrid Solid State Electrolyte

Flexible, solid-state, ion-conducting membrane with 3D garnet fiber networks for lithium batteries

FY 18 Milestones:

- Fully characterize electrochemical, mechanical and thermal properties of hybrid solid state electrolyte (SSE)
- Fabricate hybrid SSE with a thickness of ~20 μ m and understand the Li-hybrid SSE interface through Li-SSE-Li symmetric cells
- Understand Li stripping and plating in thin SSE at a current density of ~3 mA/cm² without shorting
- No Li dendrites at ~3 mA/cm² for 500 cycles

FY18 Deliverables: Quarterly and annual reports **Funding:**

- FY17: \$403,384, FY18: \$415,679, FY19: \$430,938