Large scale ab initio molecular dynamics simulations of liquid and solid electrolytes

PI/Co-PI: PI Lin-Wang Wang (Lawrence Berkeley National Laboratory)

Objective: Develop the understanding of lithium sulfur battery process using ab initio simulations, help to discover new lithium sulfur cathode materials and mitigate the lithium polysulphide dissolution problem. Study the ion transport mechanism in solid electrolytes.

Impact: Remove the huddles in commercialization of LiS battery system, which has a potential energy capacity of ~2400 Wh/kg. Develop the understanding and designing principles for future battery development.

Accomplishments: (FY17)
- Studied the use of 2D C2N nanosheet as the potential LiS cathode material. Discovered that the anchoring of LiₙSₘ cluster to C2N can thermodynamically overcome the dissolution of the lithium polysulphide, and show that C2N can be a good cathode material.
- Studied the use of partially oxidized black phosphorus as Li cathode. Such a system can be considered as a hybrid lithium air system, with a large theoretical capacity of ~1500 Wh/kg.
- Calculated the binding configuration and binding energy between the lithium polysulphide and transition metal embedded in carbon nitride 2D materials.

FY 18 Milestones:
- Continue study of using carbon nitride, or other 2D nanosheets for LiS cathode material
- Using molecular dynamics to investigate the stability of LiₙSₘ cluster binding to the substrate
- Develop thermodynamic integration method to calculate Li₂Sₙ properties in solvent
- Study ion diffusion mechanism in solid electrolyte

FY18 Deliverables: Investigate two new cathode systems, one solid electrolyte

Funding:
- FY18: 225K, FY17: 225K