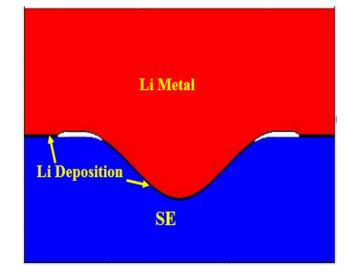
Task 3.7 – First-Principles Modeling and Design of Solid-State Interfaces for the Protection and Use of Lithium-Metal Anodes

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy

PI/Co-PI: G. Ceder (UC Berkeley)

Objective:

 Determine the design principles that control the solid electrolyte/Li electrode interfaces and create more stable Li/solid-electrolyte combinations


Impact:

- Understanding of the complex evolution of Limetal/solid electrolyte interfaces during electrochemical cycling.
- More reliable all solid-state batteries with Li metal anodes

Accomplishments:

- Developed models that integrate electrochemical transport and mechanical behavior of the electrodes
- Demonstrated that surface roughness of solid state conductor combined with plasticity of Li metal leads to growth of porosity of metallic anode

Deposition of Li metal with surface roughness

FY19 Milestones:

Q1. high-throughput framework to screen solid state electrolytes materials s.

Q2. fracture models for crack propagation in SSE: perfect crystal with cracks

Q3. fracture models for crack propagation in SSE: perfect crystal with with grain boundaries

Q4: fracture models for crack propagation in SSE as a pressed/porous electrolyte

FY19 Deliverables: Insight and design rules for Li metal anode in SSB. Papers and Presentations *Funding:*

FY19: 300K; FY18: 300K