Multifunctional, Self-Healing Polyelectrolyte Gels for Long-Cycle-Life, High-Capacity Sulfur Cathodes in Li-S Batteries

**PI/Co-PI:** Alex K.-Y. Jen (UWash)/ Jihui Yang (UWash)

**Objective:**
Develop novel self-healing and polysulfide-trapping polyelectrolyte gels containing ionic liquid, and demonstrate their potential to enable rechargeable Li-S batteries which meet the EV Everywhere blueprint target.

**Impact:**
- Rational molecular design of gel electrolytes improves lithium interface stability, polysulfide-trapping, and self-healing for electrode integrity
- Engineered polyelectrolyte gels can greatly improve Li-S battery cyclability
- Low-cost and scalable materials/fabrication enable solution for high-energy-density Li-S EV battery

**Accomplishments (FY18):**
- Designed, synthesized, and optimized solvate ionogel polyelectrolytes containing varying compositions with lithium ion conductivity $> 10^{-3}$ S/cm and $t_{Li^{+}} > 0.5$
- Developed fabrication procedures for Li-S cells containing ionogels in both the cathode and separator
- Demonstrated restored mechanical properties of optimized self-healing polymer composites with Young’s moduli $> 60$ Mpa
- Demonstrated significantly improved capacity retention in Li-S cells with polysulfide-trapping thiophenol functionalized carbon cathode with high sulfur loading of 4 mg/cm$^2$

**Molecular Design Enables High Li$^+$ Conductivity in Self-Healing and Polysulfide-Trapping Ionogels**

**FY19 Milestones:**
- Synthesis of materials for optimized gel formulations
- Provide detailed cell fabrication procedures and performance data (capacity and efficiency as a function of cycle number, voltage profiles, self-discharge test results, and other relevant data) for optimized materials used in the practical loading cell testing

**FY19 Deliverables:** Quarterly reports, Annual report, Test cells with capacity $>10$ mAh (12 baseline cells, 12 improved cells, documented test procedures for evaluation)

**Funding:**